AI Article Synopsis

  • Gut microbiota (GM) significantly impact the health of giant pandas and are influenced by their diet, habitat, and lifestyle; dietary changes, for example, lead to distinct differences in gut bacteria composition.
  • A high fiber diet enhances bacterial diversity but reduces richness, while certain bacterial genera (like Streptococcus and Pseudomonas) increase during dietary shifts, indicating their role in bamboo digestion.
  • Overall, habitat and lifestyle strongly shape the GM of giant pandas, with reintroduced pandas' gut bacteria converging to resemble that of wild pandas, suggesting that enhancing lignin degradation capabilities in GM could support this transition.

Article Abstract

Gut microbiota (GM) are important for the health of giant pandas (GPs), in addition to the utilization of bamboo in their diets. However, it is not fully understood how diet, habitat environment and lifestyle contribute to the composition of GM in GP. Consequently, we evaluated how dietary changes, habitat environment conversions and lifestyle shifts influence the GM of GPs using high-throughput sequencing and genome-resolved metagenomics. The GM of GPs were more similar when their hosts exhibited the same diet. High fiber diets significantly increased the diversity and decreased the richness of gut bacterial communities alone or interacted with the age factor (p < 0.05). The abundances of Streptococcus, Pseudomonas, Enterococcus, Lactococcus, Acinetobacter, and Clostridium significantly increased during diet conversion process (Non-parametric factorial Kruskal-Wallis sum-rank test, LDA > 4). Reconstruction of 60 metagenome-assembled-genomes (MAGs) indicated that these bacteria were likely responsible for bamboo digestion via gene complements involved in cellulose, hemicellulose, and lignin degradation. While habitat environment may play a more important role in shaping the GM of GP, lifestyle can also greatly affect bacterial communities. The GM structure in reintroduced GPs notably converged to that of wild pandas. Importantly, the main bacterial genera of wild GPs could aid in lignin degradation, while those of reintroduced GPs were related to cellulose and hemicellulose digestion. Streptococcus, Pseudomonas, Enterococcus, Lactococcus, Acinetobacter, and Clostridium may contribute to lignocellulose digestion in GP. The results revealed that diet conversion, habitat environment and lifestyle could remarkably influence the GM of GP. In addition, results suggested that increasing the ability of lignin degradation with GM may aid to change the GM of reintroduced pandas to resemble those of wild pandas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145316DOI Listing

Publication Analysis

Top Keywords

habitat environment
20
environment lifestyle
12
lignin degradation
12
diet habitat
8
giant pandas
8
bacterial communities
8
cellulose hemicellulose
8
reintroduced gps
8
wild pandas
8
gps
6

Similar Publications

The emergence of East Asian spring ephemerals and the unique ecosystem can be attributed primarily to vicariance, brought about by the Quaternary rifting of the Okinawa Trough, the formation of the East China Sea, and the isolation of the island chains of Ryukyu, Japan, and Taiwan from the Asian continent. The northern forests of Japan, dominated by and the associated , present a captivating display of spring-flowering ephemerals, including , , , and . Among these, is also considered part of the spring ephemerals.

View Article and Find Full Text PDF

Context: There are urgent calls to transition society to more sustainable trajectories, at scales ranging from local to global. Landscape sustainability (LS), or the capacity for landscapes to provide equitable access to ecosystem services essential for human wellbeing for both current and future generations, provides an operational approach to monitor these transitions. However, the complexity of landscapes complicates how and what to consider when assessing LS.

View Article and Find Full Text PDF

Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.

Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.

View Article and Find Full Text PDF

Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.

View Article and Find Full Text PDF

Decrypting the phylogeny and metabolism of microbial dark matter in green and red Antarctic snow.

ISME Commun

January 2025

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!