An increasing production and use of titanium dioxide nanoparticles (TiO NPs) pose a huge threat to phytoplankton since they are largely released into aquatic environments, which represent a sink for TiO NPs. However, toxicity and protective mechanisms of cyanobacteria in response to TiO NPs remain elusive. Here we investigated toxic effects of two sizes of TiO NPs (50 and 10 nm) and one bulk TiO (200 nm) on a cyanobacterium, Synechocystis sp. and their possible protective mechanisms. We found that 10 nm TiO NPs caused significant growth and photosynthesis inhibition in Synechocystis sp. cells, largely reflected in decreased growth rate (38%), operational PSII quantum yields (40%), phycocyanin (51%) and allophycocyanin (63%), and increased reactive oxygen species content (245%), superoxide dismutase activity (46%). Also, transcriptomic analysis of Synechocystis sp. exposure to 10 nm TiO NPs showed the up-regulation of D1 and D2 protein genes (psbA and psbD), ferredoxin gene (petF) and F-type ATPase genes (e.g., atpB), and the down-regulation of psbM and psb28-2 in PS II. We further proposed a conceptual model to explore possible toxic and protective mechanisms for Synechocystis sp. under TiO nanoparticle exposure. This study provides mechanistic insights into our understanding of Synechocystis sp. responses to TiO NPs. This is essential for more accurate environmental risk assessment approaches of nanoparticles in aquatic ecosystems by governmental environmental agencies worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.116508 | DOI Listing |
Metabolites
December 2024
Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
Background: In recent years, titanium dioxide (TiO) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals.
Methods: Therefore, we assessed the impact of TiO NPs (5 mg/L) on the marine bivalve, pearl oyster (), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO NPs for 14 days, followed by 7 days of recovery in untreated seawater.
Environ Sci Technol
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia.
Exposure to high temperatures during indoor and outdoor activities increases the risk of heat-related illness such as cramps, rashes, and heatstroke (HS). Fatal cases of HS are ten times more common than serious cardiac episodes in sporting scenarios, with untreated cases leading to mortality rates as high as 80%. Enhancing thermal comfort can be achieved through heat loss in enclosed spaces and the human body, utilizing heat transfer mechanisms such as radiation, conduction, convection, and evaporation, which do not require initial energy input.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO-NP synthesis to overcome the disadvantages of traditional approaches. TiO-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Urology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China. Electronic address:
Titanium dioxide nanoparticles (TiO NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO NPs and elucidates the underlying molecular mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!