Diosgenin-induced physicochemical effects on phospholipid bilayers in comparison with cholesterol.

Bioorg Med Chem Lett

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan. Electronic address:

Published: March 2021

AI Article Synopsis

  • Diosgenin (DGN) is a plant-derived sterol similar to cholesterol, gaining attention for its pharmacological effects.
  • The study found that both DGN and cholesterol can similarly affect lipid bilayer membranes, reducing phase transition enthalpy and orienting themselves parallel to the membrane normal.
  • However, DGN at 30 mol% changes the interactions of lipid headgroups differently than cholesterol, indicating that while it behaves like cholesterol at lower concentrations, it starts to alter membrane properties significantly at higher levels.

Article Abstract

Diosgenin (DGN), which is a sterol occurring in plants of the Dioscorea family, has attracted increasing attention for its various pharmacological activities. DGN has a structural similarity to cholesterol (Cho). In this study we investigated the effects of the common tetracyclic cores and the different side chains on the physicochemical properties of lipid bilayer membranes. Differential scanning calorimetry showed that DGN and Cho reduce the phase transition enthalpy to a similar extent. In H NMR, deuterated-DGN/Cho and POPC showed similar ordering in POPC bilayers, which revealed that DGN is oriented parallel to the membrane normal like Cho. It was suggested that the affinity of DGN-Cho in membrane is stronger than that of DGN-DGN or Cho-Cho interaction. P NMR of POPC in bilayers revealed that, unlike Cho, DGN altered the interactions of POPC headgroups at 30 mol%. These results suggest that DGN below 30 mol% has similar effects with Cho on basic biomembrane properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2021.127816DOI Listing

Publication Analysis

Top Keywords

popc bilayers
8
bilayers revealed
8
dgn
6
cho
5
diosgenin-induced physicochemical
4
physicochemical effects
4
effects phospholipid
4
phospholipid bilayers
4
bilayers comparison
4
comparison cholesterol
4

Similar Publications

The ATP-binding cassette transporter superfamily plays a pivotal role in cellular detoxification and drug efflux. ATP-binding cassette subfamily G member 2 (ABCG2) referred to as the Breast cancer resistance protein has emerged as a key member involved in multidrug resistance displayed by cancer cells. Understanding the molecular basis of substrate and inhibitor recognition, and binding within the transmembrane domain of ABCG2 is crucial for the development of effective therapeutic strategies.

View Article and Find Full Text PDF

Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers.

J Chem Inf Model

January 2025

CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.

All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups.

View Article and Find Full Text PDF

Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis.

Molecules

December 2024

REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

In this study, we synthesized a series of 3-hydroxy-4-pyridinone (3,4-HPO) chelators with varying lipophilicity by modifying the length of their alkyl chains. To investigate their interaction with lipid membranes, we employed differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy using dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) liposomes as membrane model systems. DSC experiments on DMPC liposomes revealed that hexyl-substituted chelators significantly altered the thermotropic phase behavior of the lipid bilayer, indicating their potential as membrane property modulators.

View Article and Find Full Text PDF

Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions.

Molecules

December 2024

Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.

The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl--glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!