As an important protease, trypsin (TRY) has been identified as a key indicator of various diseases. A simple and sensitive strategy for TRY detection by using an environment-friendly biosafe probe is significant. Herein, we introduced negatively charged fluorescent polydopamine nanoparticles (PDNPs) with 4.8 nm diameter obtained through a controllable method as an effective probe for TRY. PDNPs exhibited excellent fluorescence property but integrated with protamine (Pro) to form an aggregation-caused quenching system via a static quenching mechanism. The quenching mechanism of Pro to PDNPs revealed the significant effect of the surface charge, functional groups, and appropriate size of PDNPs on quenching process. Given the specific hydrolysis of Pro by TRY, PDNPs were released from the quenching integration of PDNPs and Pro (PDNPs-Pro) and recovered their fluorescence. Thus, a fluorescence sensor for TRY with a linear range of 0.01 and 0.1 μg/mL and a detection limit of 6.7 ng/mL was developed without the disturbing from other proteases. Compared with other TRY assays, the biosensor based on PDNPs-Pro has the advantages of simple operation, environmental friendliness, and high sensitivity. This specific controlled-synthesis PDNPs would open up a new window for the extended application of fluorescent nanomaterials in biomedicine based on fluorescence changes induced by biological interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.338201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!