Butanol production from lignocellulosic sugars by Clostridium beijerinckii in microbioreactors.

Biotechnol Biofuels

Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway.

Published: January 2021

Background: Butanol (n-butanol) has been gaining attention as a renewable energy carrier and an alternative biofuel with superior properties to the most widely used ethanol. We performed 48 anaerobic fermentations simultaneously with glucose and xylose as representative lignocellulosic sugars by Clostridium beijerinckii NCIMB 8052 in BioLector® microbioreactors to understand the effect of different sugar mixtures on fermentation and to demonstrate the applicability of the micro-cultivation system for high-throughput anaerobic cultivation studies. We then compared the results to those of similar cultures in serum flasks to provide insight into different setups and measurement methods.

Results: ANOVA results showed that the glucose-to-xylose ratio affects both growth and production due to Carbon Catabolite Repression. The study demonstrated successful use of BioLector® system for the first time for screening several media and sugar compositions under anaerobic conditions by using online monitoring of cell mass and pH in real-time and at unprecedented time-resolution. Fermentation products possibly interfered with dissolved oxygen (DO) measurements, which require a careful interpretation of DO monitoring results.

Conclusions: The statistical approach to evaluate the microbioreactor setup, and information obtained in this study will support further research in bioreactor and bioprocess design, which are very important aspects of industrial fermentations of lignocellulosic biomass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846990PMC
http://dx.doi.org/10.1186/s13068-021-01886-1DOI Listing

Publication Analysis

Top Keywords

lignocellulosic sugars
8
sugars clostridium
8
clostridium beijerinckii
8
butanol production
4
production lignocellulosic
4
beijerinckii microbioreactors
4
microbioreactors background
4
background butanol
4
butanol n-butanol
4
n-butanol gaining
4

Similar Publications

The basidiomycete strain LE-BIN1700 (Agaricales, ) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the culture liquids in the experimental conditions.

View Article and Find Full Text PDF

Synthesis and characterization of thermoplastic resin from sugar beet polysaccharides via one-step transesterification.

Carbohydr Polym

March 2025

Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan. Electronic address:

Lignocellulosic biomass-based plastics provide a sustainable alternative to petroleum-based plastics by converting agricultural by-products into value-added materials, promoting a circular economy. This study investigates the development of thermoplastics from sugar beet pulp (SBP), a by-product rich in cellulose and pectin. A one-pot direct transesterification process was used to fully substitute hydroxy groups in SBP with acyl chains of varying lengths (C2-C10), achieving up to 96 % substitution.

View Article and Find Full Text PDF

Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production.

Appl Microbiol Biotechnol

January 2025

Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.

Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.

View Article and Find Full Text PDF

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) and has been approved to be commercially added to infant formula. Microbial synthesis from exogenous lactose via metabolic engineering is currently the major approach to production of 2'-FL. Replacement of lactose with cheaper sugars such as glucose and sucrose has been studied to reduce the production costs.

View Article and Find Full Text PDF

Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!