Analytical description of colloid behavior in single fractures under irreversible deposition.

J Colloid Interface Sci

Department of Civil Engineering, McMaster University, Hamilton, Ontario L8S4L7, Canada. Electronic address:

Published: May 2021

Objectives: Irreversible colloid deposition in groundwater-saturated fractures is typically modeled using a lumped deposition coefficient (κ) that reflects the system physiochemical conditions. A mathematical relationship between this coefficient and the physicochemical conditions controlling deposition has not yet been defined in the literature; thus, κ is typically fitted using experimental observations. This research develops, for the first time, an analytical relationship between κ and the fraction of colloids retained in single fractures (F). This relationship could be subsequently integrated with available models relating F to the system's physicochemical properties to develop an explicit mathematical relationship between κ and these properties.

Method: The F-κ analytical relationship was developed through conceptualizing irreversible deposition as first-order decay, as both lead to permanent mass loss, and coupling this with the advection-dispersion equation. The model estimates of colloid deposition were compared to observations from laboratory-scale colloid tracer experiments. A variance-based global sensitivity analysis was applied to identify the parameters controlling deposition.

Findings: The analytical relationship efficiently replicated the experimental observations, and the global sensitivity analysis revealed that colloid deposition variability is controlled by fracture length, aperture size, and deposition coefficient; this supports the accepted understanding that colloid deposition is controlled by the system's physicochemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.12.089DOI Listing

Publication Analysis

Top Keywords

colloid deposition
16
analytical relationship
12
deposition
9
single fractures
8
irreversible deposition
8
deposition coefficient
8
mathematical relationship
8
experimental observations
8
system's physicochemical
8
physicochemical properties
8

Similar Publications

Optimized Cerium vanadate catalytic host with simple heterostructure engineering achieving regulated polysulfide deposition for high-performance Lithium-Sulfur batteries under harsh conditions.

J Colloid Interface Sci

January 2025

Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China. Electronic address:

Meliorating the behavior deposition of lithium polysulfides (LiPS) is crucial for enhancing the electrochemical performance of sulfur cathodes, which could be implemented by the precise modulation on the catalytic host. Herein, heterostructure engineering is employed to tune up the catalytic capability of CeVO, by introducing CeO through a simple adjustment in the addition sequence of reactants. The formed CeVO/CeO heterostructure has been demonstrated to exhibit appropriate interaction strength with LiPS for accelerating the catalytic conversion process, as well as an engineered surface for inducing three dimensional (3D) LiS deposition, thereby endowing the corresponding sulfur cathodes with excellent electrochemical performance under harsh conditions.

View Article and Find Full Text PDF

Regulating the Thermodynamic Uniformity and Kinetic Diffusion of Zinc Anodes for Deep Cycling of Ah-Level Aqueous Zinc-Metal Batteries.

ACS Nano

January 2025

Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.

View Article and Find Full Text PDF

Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.

View Article and Find Full Text PDF

Background: Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment.

Methods: Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.

View Article and Find Full Text PDF

Surface Template Realizing Oriented Perovskites for Highly Efficient Solar Cells.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.

Formamidinium lead iodide (FAPbI) perovskite films, ensuring optically active phase purity with uniform crystal orientation, are ideal for photovoltaic applications. However, the optically active α-FAPbI phase is easy to degrade into δ-phase due to numerous defects within randomly oriented films. Here, a "quasi-2D" perovskite template is pre-deposited on the film surface within the crystallization process based on the two-step preparation technology, which directly induced pure and highly orientated crystallization of α-FAPbI across the downward growth process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!