Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the past three decades, harmful algal blooms (HAB) events have been frequently observed in marine waters around many coastal cities in the world including Hong Kong. The increasing occurrence of HAB has caused acute influences and damages on water environment and marine aquaculture with millions of monetary losses. For example, the Tolo Harbour is one of the most affected areas in Hong Kong, where more than 30% HAB occurred. In order to forewarn the potential HAB incidents, the machine learning (ML) methods have been increasingly resorted in modelling and forecasting water quality issues. In this study, two different ML methods - artificial neural networks (ANN) and support vector machine (SVM) - are implemented and improved by introducing different hybrid learning algorithms for the simulations and comparative analysis of more than 30-year measured data, so as to accurately forecast algal growth and eutrophication in Tolo Harbour in Hong Kong. The application results show the good applicability and accuracy of these two ML methods for the predictions of both trend and magnitude of the algal growth. Specifically, the results reveal that ANN is preferable to achieve satisfactory results with quick response, while the SVM is suitable to accurately identify the optimal model but taking longer training time. Moreover, it is demonstrated that the used ML methods could ensure robustness to learn complicated relationship between algal dynamics and different coastal environmental variables and thereby to identify significant variables accurately. The results analysis and discussion of this study also indicate the potentials and advantages of the applied ML models to provide useful information and implications for understanding the mechanism and process of HAB outbreak and evolution that is helpful to improving the water quality prediction for coastal hydro-environment management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!