Cardiac hypertrophy, an important cause of heart failure, is characterized by an increase in heart weight, the ventricular wall, and cardiomyocyte volume. The volume regulatory anion channel (VRAC) is an important regulator of cell volume. However, its role in cardiac hypertrophy remains unclear. The purpose of this study was to investigate the effect of leucine-rich repeat-containing 8A (LRRC8A), an essential component of the VRAC, on angiotensin II (AngII)-induced cardiac hypertrophy. Our results showed that LRRC8A expression, NADPH oxidase activity, and reactive oxygen species (ROS) production were increased in AngII-induced hypertrophic neonatal mouse cardiomyocytes and the myocardium of C57/BL/6 mice. In addition, AngII activated VRAC currents in cardiomyocytes. The delivery of adeno-associated viral (AAV9) bearing siRNA against mouse LRRC8A into the left ventricular wall inhibited AngII-induced cardiac hypertrophy and fibrosis. Accordingly, the knockdown of LRRC8A attenuated AngII-induced cardiomyocyte hypertrophy and VRAC currents in vitro. Furthermore, knockdown of LRRC8A suppressed AngII-induced ROS production, NADPH oxidase activity, the expression of NADPH oxidase membrane-bound subunits Nox2, Nox4, and p22phox, and the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox. Immunofluorescent staining showed that LRRC8A co-localized with NADPH oxidase membrane subunits Nox2, Nox4, and p22phox. Co-immunoprecipitation and analysis of a C-terminal leucine-rich repeat domain (LRRD) mutant showed that LRRC8A physically interacts with Nox2, Nox4, and p22phox via the LRRD. Taken together, the results of this study suggested that LRRC8A might play an important role in promoting AngII-induced cardiac hypertrophy by interacting with NADPH oxidases via the LRRD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.022DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
24
nadph oxidase
20
angii-induced cardiac
12
nox2 nox4
12
nox4 p22phox
12
lrrc8a
9
hypertrophy interacting
8
interacting nadph
8
nadph oxidases
8
c-terminal leucine-rich
8

Similar Publications

Aim: To define the association between severe coronary artery disease and widespread atherosclerosis in younger individuals.

Methods: Individuals aged 1-50 years with sudden cardiac death (SCD) from 2019-23, autopsy-proven to be due to coronary artery disease, were identified using the state-wide EndUCD registry. Presence of extra-coronary atherosclerosis greater than modified American Heart Association class III was assessed in 5 arterial beds (intra-cerebral vessels, aorta, carotid, renal and femoral arteries).

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.

Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy.

View Article and Find Full Text PDF

Background: Myocardial disease is an important component of the wide field of cardiovascular disease. However, the phenomenon of multiple myocardial diseases in a single patient remains understudied.

Aim: To investigate the prevalence and impact of myocarditis in patients with genetic cardiomyopathies and to evaluate the outcomes of myocarditis treatment in the context of cardiomyopathies.

View Article and Find Full Text PDF

Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K.

Biomedicines

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!