The impact of gamma radiation on the activation of rice innate immunity to blast disease caused by Magnaporthe oryzae is described. In the present study, fenugreek seed extracts radiated with different doses of gamma rays viz. 5Gy, 10Gy, 15Gy, 20Gy and 25Gy were examined for their presence of biocompounds as well as for its ability to induce plant growth promotion and resistance against rice blast disease. The results of GC-MS analysis detected antimicrobial properties in methanolic extract. Enhanced germination (97%) and vigor (2718) was noticed in seeds pretreated with 20 Gy of gamma radiation in comparison with non-irradiated controls. Under greenhouse conditions, a significant disease protection of 56.7% on 3rd and 4th day after inoculation against rice blast was observed in 15Gy-irradiated rice plants challenge-inoculated with M. oryzae. Further, a significant increase in the hydrogen peroxide, phenol and lignin deposition was noticed in 20Gy-irradiated rice plants. Additionally, rice plants pretreated with 15Gy induced maximum activities of peroxidase (POX) and polyphenol oxidase (PPO) compared to untreated control plants. These findings revealed that rice plants-pretreated with gamma radiation elicit resistance against rice blast disease as well as strengthening the growth parameters by modulating cellular and biochemical defense system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2021.114121 | DOI Listing |
Plant Dis
January 2025
USDA-ARS SEA, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States;
Major resistance (R) gene mediated resistance to rice blast fungus Magnaporthe oryzae is often overcome by the fungus due to the occurrences of new races with altered corresponding avirulence (AVR) genes. In this study, blast diseased rice tissue samples were collected from breeding stations and commercial rice fields in Arkansas, Louisiana, and Puerto Rico during 2017-2019 to determine the efficacy of major R genes, Pi-ta, Pik, Pizt, Pi9, and Pi33. A total of 185 blast isolates were isolated from the diseased tissue samples to examine the existence of AVR genes AVR-Pita1, AVR-Pib, AVR-Pik, AVR-Pizt, AVR-Pi9 and ACE1.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India.
Rice blast disease, instigated by (), significantly impedes global rice production. Targeting the signaling protein, cAMP-Protein Kinase A (CPKA), which facilitates appressorium development and host penetration, this study explores the potential inhibitory effects of natural compounds. Virtual screening, molecular docking and text mining approaches were used to find the nimonol and curcumin that inhibit the CPKA protein.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100039, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. Electronic address:
Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae.
View Article and Find Full Text PDFPlanta
December 2024
Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.
Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!