Skin infections caused by pathogens, including bacteria, fungi and viruses, are difficult to completely eliminate through standard topical administration, owing to the restricted drug permeation into the epidermis layer. Herein, we developed a poly(ethylene glycol) diacrylate (PEGDA) microneedle patch with surface coating of a nanosilver (NS) encapsulated gelatin/sucrose film for antibacterial applications, by virtue of enhanced skin permeation by microneedle penetration and efficient drug delivery through rapid film dissolving. NS was facilely synthesized through a green process based on the bioinspired crystallization of ionic state silver in the presence of a silk fibroin (SF) template. A gelatin/sucrose polymeric film encapsulating NS was dressed on the surface of the mold cavity, and film-coated PEGDA (PEGDA/film-NS) microneedles were subsequently fabricated through standard ultraviolet (UV) light-induced polymerization. To demonstrate their advantages for therapeutic applications, the physicochemical properties of the as-developed microneedles were characterized in terms of their morphology, composition, mechanical strength, etc. Moreover, rapid NS release from PEGDA@film-NS microneedles driven by the aqueous environment was demonstrated under physiological conditions. Additionally, such film-coated microneedles exhibited good mechanical strength for skin penetration, and their antibacterial activity against Gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus) as well as Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) was verified using bacterial suspension in vitro. Altogether, such a minimally invasive strategy exhibited good potential for realizing a broad-spectrum antibacterial effect, which may provide a practical methodology for the management of polymicrobial skin infection during clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0bm02136aDOI Listing

Publication Analysis

Top Keywords

film-coated pegda
8
antibacterial applications
8
mechanical strength
8
exhibited good
8
microneedles
5
intradermal administration
4
administration green
4
green synthesized
4
synthesized nanosilver
4
nanosilver film-coated
4

Similar Publications

Skin infections caused by pathogens, including bacteria, fungi and viruses, are difficult to completely eliminate through standard topical administration, owing to the restricted drug permeation into the epidermis layer. Herein, we developed a poly(ethylene glycol) diacrylate (PEGDA) microneedle patch with surface coating of a nanosilver (NS) encapsulated gelatin/sucrose film for antibacterial applications, by virtue of enhanced skin permeation by microneedle penetration and efficient drug delivery through rapid film dissolving. NS was facilely synthesized through a green process based on the bioinspired crystallization of ionic state silver in the presence of a silk fibroin (SF) template.

View Article and Find Full Text PDF

Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability.

J Mater Chem B

December 2019

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China.

Microneedles are primarily designed for enhancing transdermal drug delivery in a minimally invasive manner. In particular, coated microneedles have attracted increasing attention due to the resulting mode of rapid and highly efficient drug administration. In this study, we developed a novel gelatin/sucrose film-coated poly(ethylene glycol)diacrylate (PEGDA) microneedle patch, which can effectively improve the skin permeability of therapeutic drugs and realize convenient and efficient drug administration.

View Article and Find Full Text PDF

The fabrication of a solid-phase microextraction (SPME) fiber through UV-induced polymerization of poly(ethylene glycol) diacrylate (PEG-DA) for determination of parabens in cosmetic products is presented in this work. The PEG-DA polymer coating was covalently attached to the fiber by introducing a surface modification with 3-(trichlorosilyl)propyl methacrylate (TPM). The PEG-DA polymer thin film coated on the fiber was homogeneous and wrinkled, which led to an increase of the surface area and high extraction efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!