Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions. Twenty-two mouse carotid arteries were mounted between glass micropipettes and kept fully vasodilated. While recording pressure, axial force (F), and inner diameter, arteries were exposed to (1) quasi-static pressure inflation from 0 to 200 mmHg; (2) 300 bpm dynamic pressure inflation (peaking at 80/120/160 mmHg); and (3) axial stretch (λ) variation at constant pressures of 10/60/100/140/200 mmHg. Measurements were performed in duplicate. Single-point pulse wave velocities (PWV; Bramwell-Hill) and axial stiffness coefficients (c = dF/dλ) were calculated at the in vivo value of λ. Within-subject coefficients of variation were ~ 20%. Dynamic PWVs were consistently higher than quasi-static PWVs (p < 0.001); c increased with increasing pressure. We demonstrated the feasibility of ex vivo biomechanical characterisation of biaxially-loaded murine carotid arteries under pulsatile conditions, and quantified reproducibility allowing for well-powered future study design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846753 | PMC |
http://dx.doi.org/10.1038/s41598-021-81151-5 | DOI Listing |
One Health
June 2025
Univ. Rennes, EHESP, Inserm, IRSET UMR_S 1085, F-3500 Rennes, France.
The French Agency for Food, Environmental and Occupational Health & Safety (Anses) has set up a multidisciplinary working group (WG) to develop an innovative One Health approach for the monitoring and evaluation of an integrated vector management system (IVMS) on a territorial scale. Four existing evaluation guidelines and methods have been combined into a semi-quantitative evaluation approach that takes into account all the dimensions of an integrated process. We propose a set of 34 criteria divided into three sections (objectives and management, implementation, integration) that correspond to the main functional components of an IVMS.
View Article and Find Full Text PDFAust J Prim Health
January 2025
School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; and The George Institute for Global Health, University of New South Wales, Barangaroo, NSW, Australia.
Background The study aimed to understand the acceptability, satisfaction, uptake, utility and feasibility of a quality improvement (QI) intervention to improve care for coronary heart disease (CHD) patients in Australian primary care practices and identify barriers and enablers, including the impact of COVID-19. Methods Within the QUality improvement for Effectiveness of care for people Living with heart disease (QUEL) study, 26 Australian primary care practices, supported by five Primary Health Networks (PHN) participated in a 1-year QI intervention (November 2019 - November 2020). Data were collected from practices and PHNs staff via surveys and semi-structured interviews.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Solu Healthcare Oy, Kalevankatu 31 A 13, 00100, Helsinki, Finland.
Background: Genomic surveillance is extensively used for tracking public health outbreaks and healthcare-associated pathogens. Despite advancements in bioinformatics pipelines, there are still significant challenges in terms of infrastructure, expertise, and security when it comes to continuous surveillance. The existing pipelines often require the user to set up and manage their own infrastructure and are not designed for continuous surveillance that demands integration of new and regularly generated sequencing data with previous analyses.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany.
Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!