Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846796PMC
http://dx.doi.org/10.1038/s41597-021-00806-0DOI Listing

Publication Analysis

Top Keywords

implant design
12
automatic implant
12
skull bone
8
bone defects
8
patient-specific craniofacial
8
work automatic
8
automatic
5
implant
5
implants
5
synthetic skull
4

Similar Publications

Objective: This study aims to evaluate the clinical efficacy of electro-pneumatic intracorporeal lithotripsy for the treatment of salivary gland stones.

Study Design: A prospective cohort study of patients diagnosed with obstructive salivary gland syndrome, where basket-assisted sialendoscopy alone failed to remove the calculi.

Setting: This study was conducted at the "Queen Maria" Military Hospital in Brașov, Romania, and a private practice, between February 2023 and May 2024.

View Article and Find Full Text PDF

Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.

View Article and Find Full Text PDF

Purpose: To evaluate visual outcomes and quality of vision following bilateral implantation of a hydrophobic acrylic intraocular lens (IOL) in eyes targeted for emmetropia.

Methods: This was a prospective, single arm study. Subjects were bilaterally implanted with the Clareon PanOptix IOL and evaluated at 1 and 3 months postoperatively.

View Article and Find Full Text PDF

Recent Developments in Ventricular Assist Device Therapy.

Rev Cardiovasc Med

January 2025

Center for Preclinical Surgical & Interventional Research, The Texas Heart Institute, Houston, TX 77030, USA.

The evolution of left ventricular assist devices (LVADs) from large, pulsatile systems to compact, continuous-flow pumps has significantly improved implantation outcomes and patient mobility. Minimally invasive surgical techniques have emerged that offer reduced morbidity and enhanced recovery for LVAD recipients. Innovations in wireless power transfer technologies aim to mitigate driveline-related complications, enhancing patient safety and quality of life.

View Article and Find Full Text PDF

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!