The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846778 | PMC |
http://dx.doi.org/10.1038/s41467-020-20716-w | DOI Listing |
Nucleic Acids Res
January 2025
Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Genome graphs, including the recently released draft human pangenome graph, can represent the breadth of genetic diversity and thus transcend the limits of traditional linear reference genomes. However, there are no genome-graph-compatible tools for analyzing whole genome bisulfite sequencing (WGBS) data. To close this gap, we introduce methylGrapher, a tool tailored for accurate DNA methylation analysis by mapping WGBS data to a genome graph.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFMolecules
January 2025
School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Computer Science and Technology, Changchun University, Changchun 130022, China.
The tissue specificity of DNA methylation refers to the significant differences in DNA methylation patterns in different tissues. This specificity regulates gene expression, thereby supporting the specific functions of each tissue and the maintenance of normal physiological activities. Abnormal tissue-specific patterns of DNA methylation are closely related to age-related diseases.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
The DNA methylation of can regulate its gene expression and may play a role in the occurrence and progression of colorectal cancer (CRC). However, the association between DNA methylation and the prognosis of CRC patients has not yet been reported. In this study, differential methylation analysis was conducted in both blood and tissue cohorts, and differential expression analysis was performed in the tissue cohort with in vitro validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!