Cell-type-specific memory consolidation driven by translational control.

Signal Transduct Target Ther

Institute of Aging, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.

Published: January 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846735PMC
http://dx.doi.org/10.1038/s41392-021-00471-0DOI Listing

Publication Analysis

Top Keywords

cell-type-specific memory
4
memory consolidation
4
consolidation driven
4
driven translational
4
translational control
4
cell-type-specific
1
consolidation
1
driven
1
translational
1
control
1

Similar Publications

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

GEMLI: Gene Expression Memory-Based Lineage Inference from Single-Cell RNA-Sequencing Datasets.

Methods Mol Biol

January 2025

Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.

Gene expression memory-based lineage inference (GEMLI) is a computational tool allowing to predict cell lineages solely from single-cell RNA-sequencing (scRNA-seq) datasets and is publicly available as an R package on GitHub. GEMLI is based on the occurrence of gene expression memory, i.e.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by heterogeneous molecular changes across diverse cell types, posing significant challenges for treatment development. To address this, we introduced a cell-type-specific, multi-target drug discovery strategy grounded in human data and real-world evidence. This approach integrates single-cell transcriptomics, drug perturbation databases, and clinical records.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairments. Despite extensive research, its pathogenesis remains incompletely understood, and effective treatments are limited. This study explored the therapeutic potential of agarwood in AD by integrating network pharmacology, protein-protein interaction (PPI) network analysis, and single-cell expression analysis.

View Article and Find Full Text PDF

During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!