Analysis of the three-dimensional (3D) structures of nanocrystals with solution-phase transmission electron microscopy is beginning to reveal their unique physiochemical properties. We developed a "one-particle Brownian 3D reconstruction method" based on imaging of ensembles of colloidal nanocrystals using graphene liquid cell electron microscopy. Projection images of differently rotated nanocrystals are acquired using a direct electron detector with high temporal (<2.5 ms) resolution and analyzed to obtain an ensemble of 3D reconstructions. Here, we introduce computational methods required for successful atomic-resolution 3D reconstruction: (i) tracking of the individual particles throughout the time series, (ii) subtraction of the interfering background of the graphene liquid cell, (iii) identification and rejection of low-quality images, and (iv) tailored strategies for 2D/3D alignment and averaging that differ from those used in biological cryo-electron microscopy. Our developments are made available through the open-source software package SINGLE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846166PMC
http://dx.doi.org/10.1126/sciadv.abe6679DOI Listing

Publication Analysis

Top Keywords

nanocrystals graphene
8
graphene liquid
8
liquid cell
8
electron microscopy
8
single atomic-resolution
4
atomic-resolution structure
4
structure identification
4
nanocrystals
4
identification nanocrystals
4
cell analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!