A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel photomultiplier tube neutron time-of-flight detector. | LitMetric

A novel photomultiplier tube neutron time-of-flight detector.

Rev Sci Instrum

Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA.

Published: January 2021

A traditional neutron time-of-flight (nTOF) detector used in inertial confinement fusion consists of a scintillator coupled with a photomultiplier tube (PMT). The instrument response function (IRF) of such a detector is dominated by the scintillator-light decay. In DT implosions with neutron yield larger than 10, a novel detector consisting of a microchannel-plate (MCP) photomultiplier tube in a housing without a scintillator (PMT nTOF) can be used to measure DT yield, ion temperature, and neutron velocity. Most of the neutron signals in PMT nTOF detectors are produced from neutron interaction with a PMT window. The direct interaction of neutrons with the MCP provides negligible contribution. The elimination of the scintillator removes the scintillator decay from the instrument response function and makes the IRF of the PMT nTOF detector faster, which makes the ion temperature and neutron velocity measurements more accurate. Three PMT nTOF detectors were deployed in the OMEGA laser system for the first time to diagnose inertial confinement fusion plasma. The design details, characteristics, and calibration results of these detectors in DT implosions on OMEGA are presented. Recommendations on the use of different PMTs for specific applications are provided.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0029005DOI Listing

Publication Analysis

Top Keywords

pmt ntof
16
photomultiplier tube
12
neutron time-of-flight
8
ntof detector
8
inertial confinement
8
confinement fusion
8
instrument response
8
response function
8
function irf
8
ion temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!