AI Article Synopsis

  • An extension of the eMS at ISOLDE/CERN enables quick sample removal for offline low-temperature studies, enhancing data collection.
  • The study combines online eMS data from temperatures of 300 K to 650 K with rapid cooling and offline decay measurements to analyze the binding properties of Mössbauer probes in the lattice.
  • Findings reveal distinct behaviors of Sn impurities in ZnO, with different charge states and distinct binding environments depending on temperatures, highlighting a new annealing stage at around 550 K.

Article Abstract

An extension of the online implantation chamber used for emission Mössbauer Spectroscopy (eMS) at ISOLDE/CERN that allows for quick removal of samples for offline low temperature studies is briefly described. We demonstrate how online eMS data obtained during implantation at temperatures between 300 K and 650 K of short-lived parent isotopes combined with rapid cooling and offline eMS measurements during the decay of the parent isotope can give detailed information on the binding properties of the Mössbauer probe in the lattice. This approach has been applied to study the properties of Sn impurities in ZnO following implantation of In (T = 2.4 min). Sn in the 4+ and 2+ charge states is observed. Above T > 600 K, Sn is observed and is ascribed to Sn on regular Zn sites, while Sn detected at T < 600 K is due to Sn in local amorphous regions. A new annealing stage is reported at T ≈ 550 K, characterized by changes in the Sn emission profile, and is attributed to the annihilation of close Frenkel pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0020951DOI Listing

Publication Analysis

Top Keywords

low temperature
8
emission mössbauer
8
mössbauer spectroscopy
8
short-lived parent
8
parent isotopes
8
annealing studies
4
studies combined
4
combined low
4
temperature emission
4
spectroscopy short-lived
4

Similar Publications

The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.

View Article and Find Full Text PDF

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

What if an experiment could combine the power of cycloaddition and cross-coupling with the formation of an aromatic molecule in a single collision? Crossed molecular beam experiments augmented with electronic structure and statistical calculations provided compelling evidence on a novel radical route involving 1,3-butadiynyl (HCCCC; X∑) radicals synthesizing (substituted) arylacetylenes in the gas phase upon reactions with 1,3-butadiene (CHCHCHCH; XA) and 2-methyl-1,3-butadiene (isoprene; CHC(CH)CHCH; XA'). This elegant mechanism merges two previously disconnected concepts of cross-coupling and cycloaddition-aromatization in a single collision event via the formation of two new C(sp)-C(sp) bonds and bending the 180° moiety of the linear 1,3-butadiynyl radical out of the ordinary by 60° to 120°. In addition to its importance to fundamental organic chemistry, this unconventional mechanism links two previously separated routes of gas-phase molecular mass growth processes of polyacetylenes and polycyclic aromatic hydrocarbons (PAHs), respectively, in low-temperature environments such as in cold molecular clouds like the Taurus Molecular Cloud (TMC-1) and in hydrocarbon-rich atmospheres of planets and their moons such as Titan, which revises the established understanding of low-temperature molecular mass growth processes in the Universe.

View Article and Find Full Text PDF

Purpose: Hypothermia occurs when core body temperature drops below 35 °C. The purpose of this review was to identify and analyze studies on the topic of hypothermia from an immunohistochemical perspective to determine robust markers of fatal hypothermia.

Methods: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines.

View Article and Find Full Text PDF

Solar-Driven Thermally Regenerative Electrochemical Cells for Continuous Power Generation with Coupled Optical and Thermal Integration.

ACS Appl Mater Interfaces

January 2025

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!