Quantifying the optical extinction cross section of a plasmonic nanoparticle has recently emerged as a powerful means to characterize the nanoparticle morphologically, i.e., to determine its size and shape with a precision comparable to electron microscopy while using a simple optical microscope. In this context, a critical piece of information to solve the inverse problem, namely, calculating the particle geometry from the measured cross section, is the material permittivity. For bulk gold, many datasets have been reported in the literature, raising the question of which one is more adequate to describe specific systems at the nanoscale. Another question is how the nanoparticle interface, not present in the bulk material, affects its permittivity. In this work, we have investigated the role of the material permittivities on the morphometric characterization of defect-free ultra-uniform gold nanospheres with diameters of 10 nm and 30 nm, following a quantitative analysis of the polarization- and spectrally-resolved extinction cross section on hundreds of individual nanoparticles. The measured cross sections were fitted using an ellipsoid model. By minimizing the fit error or the variation of the fitted dimensions with color channel selection, the material permittivity dataset and the surface damping parameter g best describing the nanoparticles are found to be the single crystal dataset by Olmon et al. [Phys. Rev. B 86, 235147 (2012)] and g ≈ 1, respectively. The resulting nanoparticle geometries are in good agreement with transmission electron microscopy of the same sample batches, including both 2D projection and tomography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0031012 | DOI Listing |
Small
January 2025
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
The desire to reduce secondary pollution from shielded electronics devices demands electromagnetic interference (EMI) shields with high green index (GI), which is the ratio of absorbance over reflectance. Achieving high GI values simultaneously with high shielding effectiveness (SE) over 50 dB is a serious unresolved challenge. Reducing the impedance mismatch between the shield and free space is the key to reducing the reflection of incoming radiation and enabling more penetration into the body of the shield for absorption.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Computer Engineering, Weifang University, Weifang 261061, China.
Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China.
Potential applications of microwave energy, a developed form of clean energy, are diverse and extensive. To expand the applications of microwave heating in the metallurgical field, it is essential to obtain the permittivity of ores throughout the heating process. This paper presents the design of a 2.
View Article and Find Full Text PDFSensors (Basel)
January 2025
University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia.
This paper introduces a novel method for measuring the dielectric permittivity of materials within the microwave and millimeter wave frequency ranges. The proposed approach, classified as a guided wave transmission system, employs a periodic transmission line structure characterized by mirror/glide symmetry. The dielectric permittivity is deduced by measuring the transmission properties of such structure when presence of the dielectric material breaks the inherent symmetry of the structure and consequently introduce a stopband in propagation characteristic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!