Methylene blue [3,7-Bis(di-methylamino) phenothiazin-5-ium chloride] is a phenothiazine dye with applications as a sensitizer for photodynamic therapy, photoantimicrobials, and dye-sensitized solar cells. Time-dependent density functional theory (TDDFT), based on (semi)local and global hybrid exchange-correlation functionals, fails to correctly describe its spectral features due to known limitations for describing optical excitations of π-conjugated systems. Here, we use TDDFT with a non-empirical optimally tuned range-separated hybrid functional to explore the optical excitations of gas phase and solvated methylene blue. We compute solvated configurations using molecular dynamics and an iterative procedure to account for explicit solute polarization. We rationalize and validate that by extrapolating the optimized range separation parameter to an infinite amount of solvating molecules, the optical gap of methylene blue is well described. Moreover, this method allows us to resolve contributions from solvent-solute intermolecular interactions and dielectric screening. We validate our results by comparing them to first-principles calculations based on the GW+Bethe-Salpeter equation approach and experiment. Vibronic calculations using TDDFT and the generating function method account for the spectra's subbands and bring the computed transition energies to within 0.15 eV of the experimental data. This methodology is expected to perform equivalently well for describing solvated spectra of π-conjugated systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0029727DOI Listing

Publication Analysis

Top Keywords

methylene blue
16
time-dependent density
8
density functional
8
functional theory
8
optical excitations
8
π-conjugated systems
8
principles theoretical
4
theoretical spectroscopy
4
methylene
4
spectroscopy methylene
4

Similar Publications

Dumbbell probe-bridged CRISPR/Cas13a and nicking-mediated DNA cascade reaction for highly sensitive detection of colorectal cancer-related microRNAs.

Biosens Bioelectron

January 2025

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, 646000, China. Electronic address:

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, necessitating the development of sensitive and minimally invasive diagnostic approaches. In this study, we present a novel diagnostic strategy by integrating dumbbell probe-mediated CRISPR/Cas13a with nicking-induced DNA cascade reaction (DP-bridged Cas13a/NDCR) for highly sensitive microRNA (miRNA) detection. Target miRNA triggers Cas13a-mediated cleavage of the dumbbell probe, releasing an intermediate strand that hybridizes with a methylene blue-labeled hairpin probe on the electrode surface.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!