Many important chemically reacting systems are inherently multi-dimensional with spatial and temporal variations in the thermochemical state, which can be strongly coupled to interactions with transport processes. Fundamental insights into these systems require multi-dimensional measurements of the thermochemical state as well as fluid dynamics quantities. Laser-based imaging diagnostics provide spatially and temporally resolved measurements that help address this need. The state of the art in imaging diagnostics is continually progressing with the goal of attaining simultaneous multi-parameter measurements that capture transient processes, particularly those that lead to stochastic events, such as localized extinction in turbulent combustion. Development efforts in imaging diagnostics benefit from advances in laser and detector technology. This article provides a perspective on the progression of increasing dimensionality of laser-based imaging diagnostics and highlights the evolution from single-point measurements to 1D and 2D multi-parameter imaging and 3D high-speed imaging. This evolution is demonstrated using highlights of laser-based imaging techniques in combustion science research as an exemplar of a complex multi-dimensional chemically reacting system with chemistry-transport coupling. Imaging diagnostics impact basic research in other chemically reacting systems as well, such as measurements of near-surface gases in heterogeneous catalysis. The expanding dimensionality of imaging diagnostics leads to larger and more complex datasets that require increasingly demanding approaches to data analysis and provide opportunities for increased collaboration between experimental and computational researchers in tackling these challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0028249 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!