Bacteriophages are viruses that exclusively kill bacteria and are the most ubiquitous organisms on the planet. Since their discovery, bacteriophages have been considered an important weapon to fight human and animal infections of bacterial origin due to their specific ability to attack the associated target bacteria. With the discovery of antibiotics, phage treatment was progressively abandoned in Western countries. However, due to the recent emergence of growing antimicrobial resistance (AMR) to antibiotics, interest in phage use in human therapy has once again grown. Similarly, at the environmental level, the extensive use of disinfectants based on chemicals, including biocides in agriculture, has been associated with the emergence of resistance against disinfectants themselves, besides having a high environmental impact. Due to these issues, the applications of phages with biocontrol purposes have become an interesting option in several fields, including farms, food industry, agriculture, aquaculture and wastewater plants. Notably, phage action is maintained even when the target bacteria are multidrug resistant (MDR), rendering this option extremely interesting in counteracting AMR emergence both for therapeutical and decontamination purposes. Based on this, bacteriophages have been interestingly proposed as environmental routine sanitizers in hospitals, to counteract the spread of the pathogenic MDR bacteria that persistently contaminate hard surfaces. This review summarizes the studies aimed at evaluating the potential use of phages as decontaminants, with a special focus on hospital sanitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911525 | PMC |
http://dx.doi.org/10.3390/microorganisms9020261 | DOI Listing |
Epilepsia
January 2025
Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
Objective: Tuberous sclerosis complex (TSC) is a monogenetic disorder associated with sustained mechanistic target of rapamycin (mTOR) activation, leading to heterogeneous clinical manifestations. Epilepsy and renal angiomyolipoma are the most important causes of morbidity in adult people with TSC (pwTSC). mTOR is a key player in inflammation, which in turn could influence TSC-related clinical manifestations.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany.
The main protease M is a clinically validated target to treat infections by the coronavirus SARS-CoV-2. Among the first reported M inhibitors was the peptidomimetic α-ketoamide , whose cocrystal structure with M paved the way for multiple lead-finding studies. We established structure-activity relationships for the series by modifying residues at the P1', P3, and P4 sites.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
Invasive pulmonary infections are a significant cause of morbidity and mortality in patients with hematological malignancies and hematopoietic stem cell transplantation (HCT) recipients. A delay in identifying a causative agent may result in late initiation of appropriate treatment and adverse clinical outcomes. We examine the diagnostic utility of PCR-based assays in evaluating invasive pulmonary infections from bronchoalveolar lavage (BAL).
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA.
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!