Low-contrast or uneven illumination in real-world images will cause a loss of details and increase the difficulty of pattern recognition. An automatic image illumination perception and adaptive correction algorithm, termed as GLAGC, is proposed in this paper. Based on Retinex theory, the illumination of an image is extracted through the discrete wavelet transform. Two features that characterize the image illuminance are creatively designed. The first feature is the spatial luminance distribution feature, which is applied to the adaptive gamma correction of local uneven lighting. The other feature is the global statistical luminance feature. Through a training set containing images with various illuminance conditions, the relationship between the image exposure level and the feature is estimated under the maximum entropy criterion. It is used to perform adaptive gamma correction on global low illumination. Moreover, smoothness preservation is performed in the high-frequency subband to preserve edge smoothness. To eliminate low-illumination noise after wavelet reconstruction, the adaptive stabilization factor is derived. Experimental results demonstrate the effectiveness of the proposed algorithm. By comparison, the proposed method yields comparable or better results than the state-of-art methods in terms of efficiency and quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865519PMC
http://dx.doi.org/10.3390/s21030845DOI Listing

Publication Analysis

Top Keywords

image illumination
8
illumination perception
8
adaptive gamma
8
gamma correction
8
image
5
illumination
5
feature
5
glagc adaptive
4
adaptive dual-gamma
4
dual-gamma function
4

Similar Publications

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

Oral cancer is a major global health problem. It is commonly diagnosed at an advanced stage although often preceded by clinically visible oral mucosal lesions, termed oral potentially malignant disorders associated with an increased risk for oral cancer development. There is an unmet clinical need for effective screening tools to assist front-line healthcare providers to determine which patients should be referred to an oral cancer specialist for evaluation.

View Article and Find Full Text PDF

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

CRISPR-Cas-based lateral flow assays (LFAs) have emerged as a promising diagnostic tool for ultrasensitive detection of nucleic acids, offering improved speed, simplicity and cost-effectiveness compared to polymerase chain reaction (PCR)-based assays. However, visual interpretation of CRISPR-Cas-based LFA test results is prone to human error, potentially leading to false-positive or false-negative outcomes when analyzing test/control lines. To address this limitation, we have developed two neural network models: one based on a fully convolutional neural network and the other on a lightweight mobile-optimized neural network for automated interpretation of CRISPR-Cas-based LFA test results.

View Article and Find Full Text PDF

Global disparities in neurosurgical care necessitate innovations addressing affordability and accuracy, particularly for critical procedures like ventriculostomy. This intervention, vital for managing life-threatening intracranial pressure increases, is associated with catheter misplacement rates exceeding 30% when using a freehand technique. Such misplacements hold severe consequences including haemorrhage, infection, prolonged hospital stays, and even morbidity and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!