Cellular senescence participates to fundamental processes like tissue remodeling in embryo development, wound healing and inhibition of preneoplastic cell growth. Most senescent cells display common hallmarks, among which the most characteristic is a permanent (or long lasting) arrest of cell division. However, upon senescence, different cell types acquire distinct phenotypes, which also depend on the specific inducing stimuli. Senescent cells are metabolically active and secrete a collection of growth factors, cytokines, proteases, and matrix-remodeling proteins collectively defined as senescence-associated secretory phenotype, SASP. Through SASP, senescent cells modify their microenvironment and engage in a dynamic dialog with neighbor cells. Senescence of neoplastic cells, at least temporarily, reduces tumor expansion, but SASP of senescent cancer cells as well as SASP of senescent stromal cells in the tumor microenvironment may promote the growth of more aggressive cancer subclones. Here, we will review recent data on the mechanisms and the consequences of cancer-therapy induced senescence, enlightening the potentiality and the risk of senescence inducing treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865402 | PMC |
http://dx.doi.org/10.3390/cancers13030484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!