Since technology progresses, the need to optimize the thermal system's heat transfer efficiency is continuously confronted by researchers. A primary constraint in the production of heat transfer fluids needed for ultra-high performance was its intrinsic poor heat transfer properties. MXene, a novel 2D nanoparticle possessing fascinating properties has emerged recently as a potential heat dissipative solute in nanofluids. In this research, 2D MXenes (TiC) are synthesized via chemical etching and blended with a binary solution containing Diethylene Glycol (DEG) and ionic liquid (IL) to formulate stable nanofluids at concentrations of 0.1, 0.2, 0.3 and 0.4 wt%. Furthermore, the effect of different temperatures on the studied liquid's thermophysical characteristics such as thermal conductivity, density, viscosity, specific heat capacity, thermal stability and the rheological property was experimentally conducted. A computational analysis was performed to evaluate the impact of ionic liquid-based 2D MXene nanofluid (TiC/DEG+IL) in hybrid photovoltaic/thermal (PV/T) systems. A 3D numerical model is developed to evaluate the thermal efficiency, electrical efficiency, heat transfer coefficient, pumping power and temperature distribution. The simulations proved that the studied working fluid in the PV/T system results in an enhancement of thermal efficiency, electrical efficiency and heat transfer coefficient by 78.5%, 18.7% and 6%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912670PMC
http://dx.doi.org/10.3390/nano11020320DOI Listing

Publication Analysis

Top Keywords

heat transfer
20
properties mxene
8
thermal efficiency
8
efficiency electrical
8
electrical efficiency
8
efficiency heat
8
transfer coefficient
8
heat
7
thermal
5
transfer
5

Similar Publications

Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Thermal Transport through CTAB- and MTAB-Functionalized Gold Interfaces Using Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres ( = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential.

View Article and Find Full Text PDF

Heat Transfer Analysis of Cryogenic EXLO Specimen Handling.

Microsc Microanal

January 2025

EXpressLO LLC, 5483 Lee St Unit 12, Lehigh Acres, FL 33971, USA.

A conduction heat transfer analysis of ex situ lift-out specimen handling under cryogenic conditions (cryo-EXLO) is performed and compared with experimentally determined temperature values using a type K thermocouple. Using a finite-volume solver for heat conduction, the analysis confirms that manipulation of a specimen by a probe above a working surface cooled at liquid nitrogen (LN2) temperatures can remain below the critical vitreous temperature up to several hundreds of micrometers above the working surface, allowing for ample distance for lift out and specimen manipulation. In addition, the temperature above the cryogenic shuttle sample holder working surface remains below the vitreous temperature for several tens of minutes without adding cryogen, yielding sufficient time to complete multiple manipulations.

View Article and Find Full Text PDF

Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!