Long-term effect of sediment on the performance of a pilot-scale duckweed-based waste stabilization pond.

Sci Total Environ

Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CAS), Chengdu 610041, China. Electronic address:

Published: May 2021

Duckweed-based waste stabilization ponds (DWPs) have been widely used in wastewater treatment. However, the effects of sediment, an essential component of DWPs, on their performance have rarely been studied. In this study, two pilot-scale DWPs (12 m) with sediment (DPS) and without sediment (DP) were evaluated over more than 1 year to determine the effects of sediment on duckweed growth, wastewater treatment, and greenhouse gas (GHG) production and emission in DWPs. The results indicated that the annual average duckweed growth rate were comparable, but protein content, carbon (C) and nitrogen (N) recovery rates of duckweed were slightly higher in the DPS than in the DP. Meanwhile, the dissolved oxygen (DO) and oxidation reduction potential (ORP), removal efficiencies of COD, TP, TN, NH-N, and turbidity of pond water from the DPS were significantly lower than for DP. More importantly, the DPS had considerably higher CH production/emission and global warming potential (GWP) than the DP, even though more than 90% of CH released from the sediment was consumed during its passage through the water column and duckweed layer. Sediment increased the recoveries of C and N by 7.94% and 8.82%, respectively. Influencing degree for COD, TP, TN, NH-N and turbidity were -27.92%, -20.98%, -22.61%, -24.13% and -14.91%, respectively; for pond water DO and ORP, the values were - 35.68% and -44.59%, respectively; and for CO, CH and NO emission and "combined GWP", they were 21.66%, 271.67%, -8.47% and 178.02%, respectively. Thus, this study indicates that sediment formed in the DWPs has a multi-faced effect on the performance of a DWP. In particular, sediment has an unfavourable effect on the wastewater treatment and the GHGs mitigation, but a favourable effect on the protein content and the C and N recoveries in duckweed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145216DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
duckweed-based waste
8
waste stabilization
8
sediment
8
effects sediment
8
duckweed growth
8
protein content
8
cod nh-n
8
nh-n turbidity
8
pond water
8

Similar Publications

To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).

View Article and Find Full Text PDF

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.

View Article and Find Full Text PDF

A Novel Eco-Friendly Process for the Synthesis and Purification of Ascorbyl-6-Oleates.

Foods

December 2024

Department of Marine Bio Food Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Republic of Korea.

Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.

View Article and Find Full Text PDF

Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!