A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and application of a hybrid long-short term memory - three dimensional variational technique for the improvement of PM forecasting. | LitMetric

The current state-of-the-art three-dimensional (3D) numerical model for air quality forecasting is restricted by the uncertainty from the emission inventory, physical/chemical parameterization, and meteorological prediction. Forecasting performance can be improved by using the 3D-variational (3D-VAR) technique for assimilating the observation data, which corrects the initial concentration field. However, errors from the prognostic model cause the correction effects at the first hour to be erased, and the bias of the forecast increases relatively fast as the simulation progresses. As an emerging alternative technique, long short-term memory (LSTM) shows promising performance in air quality forecasting for individual stations and outperforms the traditional persistent statistical models. In this study, a new method was developed to combine a 3D numerical model with 3D-VAR and LSTM techniques. This method integrates the advantage of LSTM, namely its high-accuracy forecasting for a single station and that of the 3D-VAR technique, namely its ability to extend improvement to the whole simulation domain. This hybrid method can effectively improve PM forecasting for the next 24 h, relative to forecasting with the 3D-VAR technique which uses the initial hour concentration correction. Results showed that the root-mean-square error and normalized mean error were decreased by 29.3% and 33.3% in the validation stations, respectively. The LSTM-3D-VAR method developed in this study can be further applied in other regions to improve the forecasting of PM and other ambient pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144221DOI Listing

Publication Analysis

Top Keywords

3d-var technique
12
forecasting
8
numerical model
8
air quality
8
quality forecasting
8
method developed
8
improve forecasting
8
technique
5
development application
4
application hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!