Quantitative measurement of nanoscale surface roughness of articular cartilage tissue is significant to assess the surface topography for early treatment of osteoarthritis, the most common joint disease worldwide. Since it was not established by clinical diagnostic tools, the current studies have been suggesting the use of alternative diagnostic tools using pre-clinical methods. This study aims to measure the nanoscale surface roughness of articular cartilage tissue utilizing biospeckle which is used as a non-destructive and non-contact optical imaging technique. An experimental setup was implemented to capture biospeckle images from twelve cross-section areas of articular cartilage tissue gathered from bovine knee joints at 632 nm wavelength laser radiation. Then, to analyze the biospeckle image, a second-order statistical-based method was proposed through the combination of 308 highly correlated statistical features extracted from implemented gray-level co-occurrence matrices by employing principal component analysis. The result indicated that the measurement of the nanoscale surface roughness based on the first principal component only is able to provide accurate and precise quantitative measurement of early signs of articular cartilage degeneration up to 2500 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845957PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246395PLOS

Publication Analysis

Top Keywords

articular cartilage
20
surface roughness
16
nanoscale surface
12
cartilage tissue
12
second-order statistical-based
8
quantitative measurement
8
measurement nanoscale
8
roughness articular
8
diagnostic tools
8
principal component
8

Similar Publications

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Blocking the CCL5/CCL7-CCR1 axis regulates macrophage polarization through NF-κB pathway to alleviate the progression of osteoarthritis.

Int Immunopharmacol

January 2025

Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China. Electronic address:

Objective: To study the effect of CCR1 and its ligands on macrophage polarization and evaluate its effect on chondrocytes in relieving the progression of osteoarthritis.

Methods: RAW cells were polarized to M1/M2 subtype, and then different concentrations of BX471 were added to selectively inhibit CCR1. The polarization of the cells was detected by RT-qPCR, immunofluorescence and flow cytometry.

View Article and Find Full Text PDF

Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.

View Article and Find Full Text PDF

Our previous study highlighted the anticancer potential of sea hare hydrolysate (SHH), particularly its role in regulating macrophage polarization and inducing pyroptotic death in lung cancer cells through the inhibition of signal transducer and activator of transcription 3 (STAT3). These findings prompted us to investigate additional features of immune-oncology (I-O) agents or adjuvants, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition and their association with rheumatoid arthritis (RA) risk, to explore the potential of SHH as an I-O agent or adjuvant. In this study, we investigated the effects of SHH on PD-L1 levels in various cancer cell types and assessed its effectiveness in treating RA, a common side effect of I-O agents.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) is a healthcare burden affecting over 595 million people worldwide. Recently, intra-articular platelet-rich plasma (PRP) injections from the patient's blood have shown promise in slowing KOA progression due to platelets' regenerative properties. This study aimed to evaluate the optimal dosing and schedule for PRP therapy in managing mild to moderate KOA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!