A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impacts of long-term inorganic and organic fertilization on phosphorus adsorption and desorption characteristics in red paddies in southern China. | LitMetric

AI Article Synopsis

  • Soil phosphorus (P) processes are key to soil fertility and environmental risk, and this study evaluated the impact of long-term inorganic and organic fertilization on P characteristics at three experimental sites in southern China.
  • The treatments compared were CK (no fertilizer), NPK (synthetic fertilizers), and NPKM (NPK plus manure), with results showing that NPKM significantly boosted soil organic carbon, total P, and available P across all sites.
  • NPKM exhibited the highest P adsorption/desorption capacity and maximum buffering capacity, highlighting the importance of manure addition for enhancing P utilization in red paddy soils while minimizing environmental pollution risks.

Article Abstract

Soil phosphorus (P) adsorption and desorption occur in an important endogenous cycle linked with soil fertility problems and relevant to the environmental risk assessment of P. In our study, the effect of long-term inorganic and organic fertilization on P adsorption and desorption characteristics in relation to changes in soil properties was evaluated by selecting three long-term experimental sites in southern China. The selected treatments at each site were CK (unfertilized), NPK (synthetic nitrogen, phosphorus and potassium) and NPKM (synthetic NPK plus manure). The adsorption and desorption characteristics of P were evaluated using Langmuir and Freundlich isotherms. The results showed that long-term application of NPK plus manure significantly increased soil organic carbon (SOC), total P and available P at all three sites compared with the NPK and CK treatments. All three treatments fit these equations well. The maximum adsorption capacity (Qm) of P increased with NPKM treatment, and the binding energy of P (K) and the maximum buffering capacity (MBC) showed increasing trends. NPKM showed the highest Qm (2346.13 mg kg-1) at the Jinxian site, followed by Nanchang (221.16 mg kg-1) and Ningxiang (2219.36 mg kg-1). Compared to CK and NPK, the NPKM treatment showed a higher MBC as 66.64, 46.93 and 44.39 L kg-1 at all three sites. The maximum desorption capacity (Dm) of P in soil was highest with the NPKM treatment (157.58, 166.76, 143.13 mg kg-1), showing a better ability to release P in soil. The correlation matrix showed a significant positive correlation of SOC, total and available P with Qm, Dm and MBC. In conclusion, it is suggested that manure addition is crucial to improve P utilization in red paddy soils within the recommended range to avoid the risk of environmental pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846021PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246428PLOS

Publication Analysis

Top Keywords

adsorption desorption
16
desorption characteristics
12
npkm treatment
12
long-term inorganic
8
inorganic organic
8
organic fertilization
8
phosphorus adsorption
8
southern china
8
npk manure
8
soc total
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!