Background: Bacterial infections of the upper and lower respiratory tract are a frequent complication of influenza and contribute to the widespread use of antibiotics. Influenza vaccination may help reduce both appropriate and inappropriate prescribing of antibiotics. Electronic health records provide a rich source of information for assessing secondary effects of influenza vaccination.

Methods: We conducted a retrospective study to estimate effects of influenza vaccine on antibiotic (amoxicillin) prescription in the elderly based on data from the Clinical Practice Research Datalink. The introduction of UK policy to recommend the influenza vaccine to older adults in 2000 led to a substantial increase in uptake, creating a natural experiment. Of 259,753 eligible patients that were unvaccinated in 1999 and aged≥65y by January 2000, 88,519 patients received influenza vaccination in 2000. These were propensity score matched 1:1 to unvaccinated patients. Time-to-amoxicillin was analysed using the Prior Event Rate Ratio (PERR) Pairwise method to address bias from time-invariant measured and unmeasured confounders. A simulation study and negative control outcome were used to help strengthen the validity of results.

Results: Compared to unvaccinated patients, those from the vaccinated group were more likely to be prescribed amoxicillin in the year prior to vaccination: hazard ratio (HR) 1.90 (95% confidence interval 1.83, 1.98). Following vaccination, the vaccinated group were again more likely to be prescribed amoxicillin, HR 1.64 (1.58,1.71). After adjusting for prior differences between the two groups using PERR Pairwise, overall vaccine effectiveness was 0.86 (0.81, 0.92). Additional analyses suggested that provided data meet the PERR assumptions, these estimates were robust.

Conclusions: Once differences between groups were taken into account, influenza vaccine had a beneficial effect, lowering the frequency of amoxicillin prescribing in the vaccinated group. Ensuring successful implementation of national programmes of vaccinating older adults against influenza may help contribute to reducing antibiotic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846013PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246156PLOS

Publication Analysis

Top Keywords

influenza vaccination
12
older adults
12
influenza vaccine
12
vaccinated group
12
influenza
8
effects influenza
8
unvaccinated patients
8
perr pairwise
8
group prescribed
8
prescribed amoxicillin
8

Similar Publications

Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.

View Article and Find Full Text PDF

Immunization rates of maternal influenza vaccination during pregnancy remain suboptimal, with concerns about potential harm to the mothers and their offspring. We conducted a population-based cohort study, using mother-child linked database in Korea: (a) maternal cohort between December 2019, and March 2022; (b) neonatal cohort between September 2020, and June 2021. Exposure was defined as influenza vaccination during pregnancy.

View Article and Find Full Text PDF

In 2020, I featured two articles in the "mSphere of Influence" commentary series that had profound implications for the field of immunology and helped shape my research perspective. These articles were "Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses" by Tsang et al. (Cell 157:499-513, 2014, https://doi.

View Article and Find Full Text PDF

Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses.

Vaccines (Basel)

January 2025

Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.

An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).

View Article and Find Full Text PDF

Background: The Influenza A virus (IAV), a pathogen affecting the respiratory system, represents a major risk to public health worldwide. Immunization remains the foremost strategy to control the transmission of IAV. The virus has two primary antigens: hemagglutinin (HA) and neuraminidase (NA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!