A real-time and label-free microstrip sensor capable of detecting and monitoring subsurface growth of Escherichia coli (E. coli) on solid growth media such as Luria-Bertani (LB) agar is presented. The microwave ring resonator was designed to operate at 1.76 GHz to detect variations in the dielectric properties such as permittivity and loss tangent to monitor bacterial growth. The sensor demonstrated high efficiency in monitoring subsurface dynamics of E. coli growth between two layers of LB agar. The resonant amplitude variations (Δ Amplitude (dB)) were recorded for different volumes of E. coli (3 μL and 9 μL) and compared to control without E. coli for 36 hours. The control showed a maximum amplitude variation of 0.037 dB, which was selected as a threshold to distinguish between the presence and absence of E. coli growth. The measured results by sensors were further supported by microscopic images. It is worth noticing that the amplitude variations fit well with the Gompertz growth model. The rate of amplitude change correlating bacteria growth rate was calculated as 0.08 and 0.13 dB/hr. for 3 μL and 9 μL of E. coli, respectively. This work is a proof of concept to demonstrate the capability of microwave sensors to detect and monitor subsurface bacterial growth.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2021.3055227DOI Listing

Publication Analysis

Top Keywords

monitoring subsurface
12
bacterial growth
12
growth
9
subsurface bacterial
8
coli growth
8
amplitude variations
8
3 μl 9 μl
8
coli
7
amplitude
5
passive microwave
4

Similar Publications

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

Co-occurrence of microplastics, PFASs, antibiotics, and antibiotic resistance genes in groundwater and their composite impacts on indigenous microbial communities: A field study.

Sci Total Environ

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

There is a major gap in the occurrence of mixed emerging contaminants, which hinders our efforts in exploring their behaviors and transport in environmental media, as well as their toxicity to human and ecosystem. This study assessed the occurrence and their correlations of mixed contamination by microplastics (MPs), per- and polyfluoroalkyl substances (PFASs), antibiotics, and antibiotic resistance genes (ARGs) in groundwater collected from a pharmaceutical and chemical industrial park. MPs, PFASs, antibiotics and ARGs were detected at all monitoring wells.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Groundwater nitrate response to hydrogeological conditions and socioeconomic load in an agriculture dominated area.

Sci Rep

January 2025

School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.

Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!