Current methods for tuning the plasmonic properties of metallic nanoparticles typically rely on alternating the morphology (i.e., size and/or shape) of nanoparticles. The variation of morphology of plasmonic nanoparticles oftentimes impairs their performance in certain applications. In this study, we report an effective approach based on the control of internal structure to engineer morphology-invariant nanoparticles with tunable plasmonic properties. Specifically, these nanoparticles were prepared through selective growth of Ag on the inner surfaces of preformed Ag-Au alloyed nanocages as the seeds to form Ag@(Ag-Au) shell@shell nanocages. Plasmonic properties of the Ag@(Ag-Au) nanocages can be conveniently and effectively tuned by varying the amount of Ag deposited on the inner surfaces, during which the overall morphology of the nanocages remains unchanged. To demonstrate the potential applications of the Ag@(Ag-Au) nanocages, they were applied to colorimetric sensing of human carcinoembryonic antigen (CEA) that achieved low detection limits. This work provides a meaningful concept to design and craft plasmonic nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c06123 | DOI Listing |
Anal Chem
January 2025
Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
Objective: To elucidate the metabolic mechanisms by which acteoside (ACT) isolated from alleviates cancer-related fatigue (CRF) in a murine model of colon cancer with cachexia.
Methods: BALB/c mice inoculated with C26 colon cancer cells were treated with paclitaxel (PTX, 10 mg/kg) and ACT (100 mg/kg) alone or in combination for 21 days. Fatigue-associated behaviors, tumor inhibition rate, and skeletal muscle morphology assessed by hematoxylin-eosin (H&E) staining and electron microscopy were evaluated.
Nanoscale Horiz
January 2025
Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Bellaterra, Spain.
High-refractive-index (HRI) dielectrics are gaining increasing attention as building blocks for compact lasers. Their ability to simultaneously support both electric and magnetic modes provides greater versatility as compared to plasmonic platforms. Moreover, their reduced absorption loss minimizes heat generation, further enhancing their performance.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:
Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!