Developmental researchers commonly utilize multilevel models (MLMs) to describe and predict individual differences in change over time. In such growth model applications, researchers have been widely encouraged to supplement reporting of statistical significance with measures of effect size, such as R-squareds (R ) that convey variance explained by terms in the model. An integrative framework for computing R-squareds in MLMs with random intercepts and/or slopes was recently introduced by Rights and Sterba and it subsumed pre-existing MLM R-squareds as special cases. However, this work focused on cross-sectional applications, and hence did not address how the computation and interpretation of MLM R-squareds are affected by modeling considerations typically arising in longitudinal settings: (a) alternative centering choices for time (e.g., centering-at-a-constant vs. person-mean-centering), (b) nonlinear effects of predictors such as time, (c) heteroscedastic level-1 errors and/or (d) autocorrelated level-1 errors. This paper addresses these gaps by extending the Rights and Sterba R-squared framework to longitudinal contexts. We: (a) provide a full framework of total and level-specific R-squared measures for MLMs that utilize any type of centering, and contrast these with Rights and Sterba's measures assuming cluster-mean-centering, (b) explain and derive which measures are applicable for MLMs with nonlinear terms, and extend the R-squared computation to accommodate (c) heteroscedastic and/or (d) autocorrelated errors. Additionally, we show how to use differences in R-squared (ΔR ) measures between growth models (adding, for instance, time-varying covariates as level-1 predictors or time-invariant covariates as level-2 predictors) to obtain effects sizes for individual terms. We provide R software (r2MLMlong) and a running pedagogical example analyzing growth in adolescent self-efficacy to illustrate these methodological developments. With these developments, researchers will have greater ability to consider effect size when analyzing and predicting change using MLMs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cad.20387DOI Listing

Publication Analysis

Top Keywords

alternative centering
8
rights sterba
8
mlm r-squareds
8
level-1 errors
8
and/or autocorrelated
8
r-squareds
5
mlms
5
measures
5
size measures
4
measures longitudinal
4

Similar Publications

Mitigation of Self-p-Doping and Off-Centering Effect in Tin Perovskite via Strontium Doping.

ACS Energy Lett

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany.

Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereochemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material.

View Article and Find Full Text PDF

Comparison of mechanical properties and shaping performance of ProGlider and ProTaper ultimate slider.

BMC Oral Health

January 2025

Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, 26-6, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.

Background: This study aims to compare design, phase transformation behavior, and torsional resistance of the ProGlider (PG) and ProTaper ultimate slider (PUS) and to compare the performance of two files in the glide-path preparation of a double-curved artificial canal.

Methods: Scanning electron microscopy, micro-computed tomography, and differential scanning calorimetry were used to characterize the samples. A torsional resistance test was performed to obtain ultimate strength and distortion angle.

View Article and Find Full Text PDF

The proximity extension assay (PEA) enables large-scale proteomic investigations across numerous proteins and samples. However, discrepancies between measurements, known as batch-effects, potentially skew downstream statistical analyses and increase the risks of false discoveries. While implementing bridging controls (BCs) on each plate has been proposed to mitigate these effects, a clear method for utilizing this strategy remains elusive.

View Article and Find Full Text PDF

Introduction Breast cancer is one of the most common female malignancies in the United States and often necessitates surgical interventions that carry a substantial risk of postoperative pain. Pectoral nerve blocks have emerged as a simpler alternative for providing regional perioperative analgesia to the chest wall in breast cancer surgery. This retrospective study evaluated the impact of implementing a novel regional anesthesia protocol centering on the use of pectoral nerve blocks for patients undergoing radical mastectomy at a small regional hospital in Spartanburg, South Carolina.

View Article and Find Full Text PDF

Objective(s): We sought to understand patients' and obstetrician-gynecologists' priorities in seeking or recommending long-acting reversible contraceptive methods (LARC; intrauterine devices and contraceptive implants) versus permanent contraception in the postpartum period when permanent contraception was the patient's initial contraceptive preference.

Study Design: We interviewed 81 postpartum patients who desired permanent contraception and their delivering obstetrician-gynecologist (n = 67) from four US institutions to explore patient and obstetrician-gynecologist (OBGYN) perspectives navigating permanent contraception counseling and decision-making. We used thematic content analysis to analyze interview transcripts using NVivo 12 Pro software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!