Nanovesicle Formulation Enhances Anti-inflammatory Property and Safe Use of Piroxicam.

Pharm Nanotechnol

Drug Delivery and Nanotechnology Research Unit (RUNDD), Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.

Published: October 2021

Background: Enhanced utilization of certain drugs may be possible through the development of alternative delivery forms. It has been observed that NSAIDs have adverse gastrointestinal tract effects such as irritation and ulceration during anti-inflammatory therapy. This challenge may be overcome through nano topical formulations.

Objective: This study aimed to explore the potentials of a transdermal nanovesicular formulation for safe and enhanced delivery of piroxicam (PRX), a poorly water-soluble NSAID.

Methods: Preformulation studies were conducted using DSC and FTIR. Ethosomal nanovesicular carrier (ENVC) was prepared by thin-film deposition technique using Phospholipon® 90 H (P90H) and ethanol and then converted into gel form. The formulation was characterized using a commercial PRX gel as control. Permeation studies were conducted using rat skin and Franz diffusion cell. Samples were assayed spectrophotometrically, and the obtained data was analyzed by ANOVA using GraphPad Prism software.

Results: The preformulation studies showed compatibility between PRX and P90H. Spherical vesicles of mean size 343.1 ± 5.9 nm, and polydispersity index 0.510 were produced, which remained stable for over 2 years. The optimized formulation (PE30) exhibited pseudoplastic flow, indicating good consistency. The rate of permeation increased with time in the following order: PE30 > Commercial, with significant difference (p< 0.05). It also showed higher inhibition of inflammation (71.92 ± 9.67%) than the reference (64.12 ± 7.92%).

Conclusion: ENVC gel of PRX was formulated. It showed potentials for enhanced transdermal delivery and anti-inflammatory activity relative to the reference. This may be further developed as a safe alternative to the oral form.

Download full-text PDF

Source
http://dx.doi.org/10.2174/2211738509666210129151844DOI Listing

Publication Analysis

Top Keywords

preformulation studies
8
studies conducted
8
nanovesicle formulation
4
formulation enhances
4
enhances anti-inflammatory
4
anti-inflammatory property
4
property safe
4
safe piroxicam
4
piroxicam background
4
background enhanced
4

Similar Publications

Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively.

View Article and Find Full Text PDF

FormulationBCS: A Machine Learning Platform Based on Diverse Molecular Representations for Biopharmaceutical Classification System (BCS) Class Prediction.

Mol Pharm

January 2025

Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, China.

The Biopharmaceutics Classification System (BCS) has facilitated biowaivers and played a significant role in enhancing drug regulation and development efficiency. However, the productivity of measuring the key discriminative properties of BCS, solubility and permeability, still requires improvement, limiting high-throughput applications of BCS, which is essential for evaluating drug candidate developability and guiding formulation decisions in the early stages of drug development. In recent years, advancements in machine learning (ML) and molecular characterization have revealed the potential of quantitative structure-performance relationships (QSPR) for rapid and accurate BCS classification.

View Article and Find Full Text PDF

The lack of local availability for drugs in the colon can be addressed by preparing a self-microemulsifying drug delivery system (SMEDDS) of curcumin (Cur) which is ultimately used for the treatment of inflammatory bowel disease (IBD). From preformulation studies, Lauroglycol FCC (oil), Tween 80 (surfactant), Transcutol HP (co-surfactant), and Avicel (solid carrier) were selected for the preparation of blank liquid and solid Cur-loaded SMEDDSs (S-Cur-SMEDDSs). Z-average size (12.

View Article and Find Full Text PDF

Impact of Pluronic F-127 on the Stability of Quercetin-Loaded Liposomes: Insights from DSC Preformulation Studies.

Materials (Basel)

November 2024

Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.

The aim of the present study is to evaluate the stability of DMPC:Pluronic F-127 and DPPC:Pluronic F-127 liposomes, both with and without incorporated quercetin. Quercetin belongs to the class of flavonoids and has shown antioxidant, antiviral, anti-inflammatory, anti-cancer, and antimicrobial activities. Dynamic light scattering, electrophoretic light scattering, and differential scanning calorimetry (DSC) were utilized to investigate the cooperative behavior between liposomal components and its effect on stability.

View Article and Find Full Text PDF

This study aimed at preparing sustained release rosuvastatin (Ru) calcium carbonate (CC) co-precipitate nano-formulation for local intra-osseous application in osteoporotic rats. Nano-formulations were prepared by the co-precipitation method using different concentrations of polyvinyl alcohol (PVA) (0.2, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!