Advances and prospects in the food applications of pectin hydrogels.

Crit Rev Food Sci Nutr

Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.

Published: June 2022

Pectin hydrogel is a soft hydrocolloid with multifaceted utilities in the food sector. Substantial knowledge acquired on the gelation mechanisms and structure-function relationship of pectin has led to interesting functions of pectin hydrogel. Food applications of pectin hydrogels can be categorized under four headings: food ingredients/additives, food packaging, bioactive delivery and health management. The cross-linked and tangly three-dimensional structure of pectin gel renders it an ideal choice of wall material for the encapsulation of biomolecules and living cells; as a fat replacer and texturizer. Likewise, pectin hydrogel is an effective satiety inducer due to its ability to swell under the simulated gastric and intestinal conditions without losing its gel structure. Coating or composites of pectin hydrogel with proteins and other polysaccharides augment its functionality as an encapsulant, satiety-inducer and food packaging material. Low-methoxyl pectin gel is an appropriate food ink for 3D printing applications due to its viscoelastic properties, adaptable microstructure and texture properties. This review aims at explaining all the applications of pectin hydrogels, as mentioned above. A comprehensive discussion is presented on the approaches by which pectin hydrogel can be transformed as a resourceful material by controlling its dimensions, state, and rheology. The final sections of this article emphasize the recent research trends in this discipline, such as the development of smart hydrogels, injectable gels, aerogels, xerogels and oleogels from pectin.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2021.1875394DOI Listing

Publication Analysis

Top Keywords

pectin hydrogel
20
pectin
12
applications pectin
12
pectin hydrogels
12
food applications
8
food packaging
8
pectin gel
8
food
7
hydrogel
5
advances prospects
4

Similar Publications

Synthesis of 5-substituted 1-tetrazoles and reduction of a variety of nitro compounds presents a promising solution for the pharmaceutical and agricultural industries. However, the development of green catalysts with superior catalytic performance for this reaction remains a significant challenge. This research introduces a green protocol for the creation of ultrafine Cu(ii) metal immobilized on the surface of pectin hydrogel (HPEC), modified by a CoFeO/Pr-SOH magnetic nanocomposite, enabling the synthesis of tetrazoles and reduction of nitro compounds.

View Article and Find Full Text PDF

Lauric acid-loaded biomimetic, biocompatible, and antioxidant jelly fig (Ficus awkeotsang Makino) pectin hydrogel accelerates wound healing in diabetic rats.

Int J Biol Macromol

January 2025

Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India. Electronic address:

Herein, we have presented a lauric acid (LA)-loaded jelly fig pectin (JFP)-based biocompatible hydrogel, which possesses strong antioxidant and antibacterial properties to treat diabetic wounds. The antioxidant and antibacterial activity of the JFP + LA hydrogels were beneficial in eliminating the reactive oxygen species (ROS) and bacterial infection in the wound bed, thereby protecting the wound surface and accelerating the tissue repair process. The in vivo diabetic wound healing studies demonstrated that applying JFP + LA hydrogels improved the rate of wound contraction and reduced the epithelialization time significantly.

View Article and Find Full Text PDF

Development of plantaricin RX-8 loaded pectin/4-carboxyphenylboric acid/carboxymethyl chitosan hydrogel microbead: A potential targeted oral delivery system.

Int J Biol Macromol

December 2024

School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

Bacteriocin can effectively improve the gut inflammation for their superior antibacterial activity. However, its inherent attributes, such as easily degraded and off-target effect in the gastrointestinal environment, make bacteriocins' efficient oral delivery a great challenge. Herein, a pectin/4-carboxyphenylboric acid/carboxymethyl chitosan (PEC/CPBA/CMCS) hydrogel microbead targeted oral delivery system was innovatively developed for the plantaricin RX-8 protective delivery, precisely targeted inflammatory microenvironment (IME) and sustained released plantaricin RX-8 by pH/ROS dual stimulation response.

View Article and Find Full Text PDF

An effective drug-free hydrogel for accelerating the whole healing process of bacteria-infected wounds.

Biomater Sci

December 2024

Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.

Wound healing is a dynamic and complex process involving hemostasis, inflammation, fibroblast proliferation, and tissue remodeling. This process is highly susceptible to bacterial infection, which often leads to impaired and delayed wound repair. While antibiotic therapy remains the primary clinical approach for treating bacteria-infected wounds, its widespread use poses a significant risk of developing bacterial resistance.

View Article and Find Full Text PDF

Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!