Photocrosslinked, Tunable Protein Vesicles for Drug Delivery Applications.

Adv Healthc Mater

School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA.

Published: August 2021

AI Article Synopsis

  • Recombinant proteins are useful for creating vesicles that can self-assemble, exhibiting versatility due to genetic manipulation and compatibility with biological systems.* -
  • A unique amino acid, para-azido phenylalanine, is used in elastin-like polypeptide (ELP) fusion proteins to enhance the photocrosslinking, stability, and size control of these vesicles in physiological settings.* -
  • These protein vesicles effectively encapsulate the anti-cancer drug doxorubicin and can potentially be used for advanced drug delivery methods, including combinations of small molecules and proteins for targeted therapy.*

Article Abstract

Recombinant proteins have emerged as promising building blocks for vesicle self-assembly because of their versatility through genetic manipulation and biocompatibility. Vesicles composed of thermally responsive elastin-like polypeptide (ELP) fusion proteins encapsulate cargo during assembly. However, vesicle stability in physiological environments remains a significant challenge for biofunctional applications. Here, incorporation of an unnatural amino acid, para-azido phenylalanine, into the ELP domain is reported to enable photocrosslinking of protein vesicles and tuning of vesicle size and swelling. The size of the vesicles can be tuned by changing ELP hydrophobicity and ionic strength. Protein vesicles are assessed for their ability to encapsulate doxorubicin and dually deliver doxorubicin and fluorescent protein in vitro as a proof of concept. The resulting photocrosslinkable vesicles made from full-sized, functional proteins show high potential in drug delivery applications, especially for small molecule/protein combination therapies or targeted therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202001810DOI Listing

Publication Analysis

Top Keywords

protein vesicles
12
drug delivery
8
delivery applications
8
vesicles
6
photocrosslinked tunable
4
protein
4
tunable protein
4
vesicles drug
4
applications recombinant
4
recombinant proteins
4

Similar Publications

Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Many membrane proteins on the cell surface are constantly internalized from, and re-delivered to, the plasma membrane. This endocytic cycling, which relies on accurate SNARE-mediated fusion of vesicles containing cargo proteins, is highly important for the function of many proteins such as signaling receptors. While the SNARE proteins that mediate fusion during specific events, such as neurotransmitter and hormone release, in mammalian cells has been heavily studied, the SNARE proteins that mediate surface delivery of specific cargo such as the receptors for these released factors are still not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!