The high refractive index of hydrogenated amorphous silicon (a-Si:H) at optical frequencies is an essential property for the efficient modulation of the phase and amplitude of light. However, substantial optical loss represented by its high extinction coefficient prevents it from being utilized widely. Here, the bonding configurations of a-Si:H are investigated, in order to manipulate the extinction coefficient and produce a material that is competitive with conventional transparent materials, such as titanium dioxide and gallium nitride. This is achieved by controlling the hydrogenation and silicon disorder by adjusting the chemical deposition conditions. The extinction coefficient of the low-loss a-Si:H reaches a minimum of 0.082 at the wavelength of 450 nm, which is lower than that of crystalline silicon (0.13). Beam-steering metasurfaces are demonstrated to validate the low-loss optical properties, reaching measured efficiencies of 42%, 62%, and 75% at the wavelengths of 450, 532, and 635 nm, respectively. Considering its compatibility with mature complementary metal-oxide-semiconductor processes, the low-loss a-Si:H will provide a platform for efficient photonic operating in the full visible regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202005893 | DOI Listing |
Sci Rep
January 2025
Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.
View Article and Find Full Text PDFChemistry
January 2025
Shandong Normal University, Chemistry, No.88 Wenhua East Road, 250014, Jinan, CHINA.
Non-fused electron acceptors have obtained increasing curiosity in organic solar cells (OSCs) thanks to simple synthetic route and versatile chemical modification capabilities. However, non-fused acceptors with varying quinoxaline core and as-cast device have rarely been explored, and the molecular structure-photovoltaic performance relationship of such acceptors remains unclear. Herein, two non-fused acceptors L19 and L21 with thienyl substituted non-fluorinated/fluorinated quinoxaline core were developed via five-step synthesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
The present investigation seeks to customize the optical, magnetic, and structural characteristics of nickel oxide (NiO) nanopowders through chromium, iron, cobalt, copper, and zinc doping to enhance optoelectronic applications. In this regard, the preparation of pristine NiO and Ni × O (X = Cr, Fe, Co, Cu, and Zn) powders was successfully achieved through the co-precipitation method. The X-ray powder diffraction was employed to examine the prepared powders' phase formation and crystal structure characteristics.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!