Analysis of structural components of decellularized scaffolds in renal fibrosis.

Bioact Mater

Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, North Center Road, Ouhai District, Wenzhou, 325035, China.

Published: July 2021

Chronic kidney disease has been recognized as a major public health problem worldwide and renal fibrosis is a common pathological process occurring in chronic renal failure. It is very promising to find the strategies to slow or even prevent the progression of fibrosis. This study focused on whether renal fibrosis decellularized scaffolds has the potential to be a model of cellular mechanisms of tissue fibrosis or donors for tissue engineering. In order to evaluate the feasibility of decellularized scaffolds derived from pathological kidneys, histology, proteomics and ELISA will be used to analysis the changes in the structure and main components of fibrotic tissue. The fibrosis model in this paper was induced by adenine-fed and the results showed that the structure of fibrotic scaffold was changed and some protein were up-regulated or down-regulated, but the cytokines associated with renal regeneration after injury were remained. In cell experiments, endothelial progenitor cells proliferated well, which proved that the fibrotic scaffolds have non-cytotoxic. All these conclusions indicate that the renal fibrosis decellularized scaffolds model has the ability to study fibrosis mechanism and the potential to be engineering donors as well as normal scaffolds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815494PMC
http://dx.doi.org/10.1016/j.bioactmat.2020.12.028DOI Listing

Publication Analysis

Top Keywords

decellularized scaffolds
16
renal fibrosis
16
fibrosis
8
fibrosis decellularized
8
tissue fibrosis
8
scaffolds
6
renal
6
analysis structural
4
structural components
4
decellularized
4

Similar Publications

Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering.

Front Bioeng Biotechnol

January 2025

Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.

Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced only in the mouse.

View Article and Find Full Text PDF

Introduction: Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.

Methods: Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis.

View Article and Find Full Text PDF

Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).

View Article and Find Full Text PDF

Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an unsolved problem. Liver bioengineering offers a promising method for expanding the donor pool through the production of acellular scaffolds that can be seeded with recipient cells.

View Article and Find Full Text PDF

Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers.

J Funct Biomater

January 2025

Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.

This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver's intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!