Articular cartilage injury is a common disease in the field of orthopedics. Because cartilage has poor self-repairing ability, medical intervention is needed. Using melt electro-writing (MEW) technology, tissue engineering scaffolds with high porosity and high precision can be prepared. However, ordinary materials, especially natural polymer materials, are difficult to print. In this study, gelatin was mixed with poly (lactic-co-glycolic acid) to prepare high-concentration and high-viscosity printer ink, which had good printability and formability. A composite scaffold with full-layer TGF-β1 loading mixed with hydroxyapatite was prepared, and the scaffold was implanted at the cartilage injury site; microfracture surgery was conducted to induce the mesenchyme in the bone marrow. Quality stem cells thereby promoted the repair of damaged cartilage. In summary, this study developed a novel printing method, explored the molding conditions based on MEW printing ink, and constructed a bioactive cartilage repair scaffold. The scaffold can use autologous bone marrow mesenchymal stem cells and induce their differentiation to promote cartilage repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814104 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2020.12.018 | DOI Listing |
JBJS Case Connect
January 2025
Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut.
Case: A 16-year-old woman presented with acute on chronic knee pain and instability following a twisting injury. The tibial insertion of the anterior cruciate ligament (ACL) was nonvisualized on magnetic resonance imaging. A cord-like ACL, originating from the lateral intercondylar notch and inserting smoothly into the anterior horn of the intact lateral meniscus, was found on arthroscopy.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain.
Background: Articular cartilage injuries can lead to pain, stiffness, and reduced mobility, and may eventually progress to osteoarthritis (OA). Despite substantial research efforts, effective therapies capable of regenerating cartilage are still lacking. Mesenchymal stromal cells (MSCs) are known for their differentiation and immunomodulatory capabilities, yet challenges such as limited survival post-injection and inconsistent therapeutic outcomes hinder their clinical application.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
Microsurgical Repair and Reconstruction Ward of Department of Orthopaedics, Fu Yang People's Hospital, Fuyang Anhui, 236000, P. R. China.
Objective: To investigate the effectivess of arthroscopic Wafer surgery combined with triangular fibrocartilage complex (TFCC) insertion point reconstruction in the treatment of Palmer type ⅡC combined with typeⅠB ulnar impingement syndrome.
Methods: The clinical data of 14 patients with Parlmer type ⅡC combined with type ⅠB ulnar impingement syndrome who met the selection criteria between July 2021 and April 2024 were retrospectively analyzed. There were 7 males and 7 females with an average age of 43 years ranging from 16 to 59 years.
J Int Soc Sports Nutr
December 2025
Jiujiang No.1 People's Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China.
Objective: The aim of this study was to identify the key regulatory mechanisms of cartilage injury and osteoporosis through bioinformatics methods, and to provide a new theoretical basis and molecular targets for the diagnosis and treatment of the disease.
Methods: Microarray data for cartilage injury (GSE129147) and osteoporosis (GSE230665) were first downloaded from the GEO database. Differential expression analysis was applied to identify genes that were significantly up-or down-regulated in the cartilage injury and osteoporosis samples.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!