Heat-Induced Oxidation of the Nuclei and Cytosol.

Front Plant Sci

School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.

Published: January 2021

The concept that heat stress (HS) causes a large accumulation of reactive oxygen species (ROS) is widely accepted. However, the intracellular compartmentation of ROS accumulation has been poorly characterized. We therefore used redox-sensitive green fluorescent protein (roGFP2) to provide compartment-specific information on heat-induced redox changes of the nuclei and cytosol of Arabidopsis leaf epidermal and stomatal guard cells. We show that HS causes a large increase in the degree of oxidation of both compartments, causing large shifts in the glutathione redox potentials of the cells. Heat-induced increases in the levels of the marker transcripts, heat shock protein (), and ascorbate peroxidase () were maximal after 15 min of the onset of the heat treatment. RNAseq analysis of the transcript profiles of the control and heat-treated seedlings revealed large changes in transcripts encoding HSPs, mitochondrial proteins, transcription factors, and other nuclear localized components. We conclude that HS causes extensive oxidation of the nucleus as well as the cytosol. We propose that the heat-induced changes in the nuclear redox state are central to both genetic and epigenetic control of plant responses to HS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835529PMC
http://dx.doi.org/10.3389/fpls.2020.617779DOI Listing

Publication Analysis

Top Keywords

nuclei cytosol
8
heat-induced
4
heat-induced oxidation
4
oxidation nuclei
4
cytosol concept
4
concept heat
4
heat stress
4
large
4
stress large
4
large accumulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!