The human gut microbiome is emerging as a key modulator of homeostasis, with far-reaching implications for various multifactorial diseases, including anorexia nervosa (AN). Despite significant morbidity and mortality, the underlying mechanisms of this eating disorder are poorly understood, but the classical view defining AN as a purely psychiatric condition is increasingly being challenged. Accumulating evidence from comparative studies of AN and healthy fecal microbial composition reveals considerable low divergence and altered taxonomic abundance of the AN gut microbiome. When integrated with preclinical data, these findings point to a significant role of the gut microbiome in AN pathophysiology, via effects on host energy metabolism, intestinal permeability, immune function, appetite, and behavior. While complex causal relationships between genetic risk factors, dietary patterns and microbiome, and their relevance for AN onset and perpetuation have not been fully elucidated, preliminary clinical studies support the use of microbiome-based interventions such as fecal microbiota transplants and probiotics as adjuvants to standard AN therapies. Future research should aim to move from observational to mechanistic, as dissecting how specific microbial taxa interact with the host to impact the development of AN could help design novel therapeutic approaches that more effectively address the severe comorbidities and high relapse rate of this serious disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835121 | PMC |
http://dx.doi.org/10.3389/fpsyt.2020.611677 | DOI Listing |
World J Orthop
December 2024
Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil.
The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.
View Article and Find Full Text PDFTheranostics
January 2025
Renal Division, Peking University First Hospital, Beijing, China.
The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies.
View Article and Find Full Text PDFCan J Vet Res
January 2025
Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China (Han, Sun, Gu, J. Wang, X. Wang, Tao, Z. Wang, Liu); Jiangxi Agricultural University, No. 1225, Zhimin Avenue, Xinjian District, Nanchang City 330045, China (Gu).
Prebiotics are important for gut health and immunity in animals and could promote the growth of beneficial bacteria. The objective of this study was to investigate the prebiotic potential of lactobin and glucans when combined with goat's milk in the diet of cats. Twenty-four healthy cats (all about 2 y old) were randomly assigned to 4 treatment groups.
View Article and Find Full Text PDFCan J Vet Res
January 2025
Laboratory of Veterinary Dermatology (Han, Hwang) and Research Institute for Veterinary Science (Han, Mun, Hwang), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; ORIGIN Veterinary Dermatology Clinic, Busan, Republic of Korea (Kang); Department of Companion Animal Health Care, College of Medical Health, Kyungbok University, Namyangju, Republic of Korea (Kim S-J); Department of Large Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea (Kim Y-H).
The objective of this study was to evaluate whether supplementation with probiotics over a 2-week period stabilizes the gut microbiota in dogs following prolonged cefovecin treatment. A significant number of clinical veterinarians prescribe oral probiotics to dogs in conjunction with systemic antibiotics with the intention of protecting against gut dysbiosis. The effects of antibiotics and probiotics in dogs have not been extensively studied, however, and the optimal treatment for gut dysbiosis remains uncertain.
View Article and Find Full Text PDFFront Microbiol
December 2024
Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.
Introduction: The development of the human gut microbiota is shaped by factors like delivery mode, infant feeding practices, maternal diet, and environmental conditions. Diet plays a pivotal role in determining the diversity and composition of the gut microbiome, which in turn impacts immune development and overall health during this critical period. The early years, which are vital for microbial shaping, highlight a gap in understanding how the shift from milk-based diets to solid foods influences gut microbiota development in infants and young children, particularly in Yaoundé, Cameroon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!