The reasons why the Western Mediterranean, especially Carthage and Rome, resisted monetization relative to the Eastern Mediterranean are still unclear. We address this question by combining lead (Pb) and silver (Ag) isotope abundances in silver coinage from the Aegean, Magna Graecia, Carthage and Roman Republic. The clear relationships observed between Ag/Ag and Pb/Pb reflect the mixing of silver ores or silver objects with Pb metal used for cupellation. The combined analysis of Ag and Pb isotopes reveals important information about the technology of smelting. The Greek world extracted Ag and Pb from associated ores, whereas, on the Iberian Peninsula, Carthaginians and Republican-era Romans applied Phoenician cupellation techniques and added exotic Pb to Pb-poor Ag ores. Massive Ag recupellation is observed in Rome during the Second Punic War. After defeating the Carthaginians and the Macedonians in the late second century bce, the Romans brought together the efficient, millennium-old techniques of silver extraction of the Phoenicians, who considered this metal a simple commodity, with the monetization of the economy introduced by the Greeks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821003PMC
http://dx.doi.org/10.1111/arcm.12615DOI Listing

Publication Analysis

Top Keywords

silver coinage
8
silver
6
commodity money
4
money rise
4
rise silver
4
coinage ancient
4
ancient mediterranean
4
mediterranean sixth-first
4
sixth-first centuries
4
centuries bce
4

Similar Publications

Unlabelled: This study addresses longstanding questions concerning the ore sources used in the first series of coins of ancient Athens known as the (c.540-c.500 BCE) by combining comprehensive numismatic data on 22 coins (16 new and 6 legacy analyses) with lead isotope and surface elemental measurements (MC-ICP-MS and XRF).

View Article and Find Full Text PDF

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Enhancing hydride formation and transfer for catalytic hydrogenation via electron-deficient single-atom silver.

J Colloid Interface Sci

March 2025

Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. Electronic address:

Metal hydrides are sensitive to HO and O, which reduces the atom efficiency of the hydride donors. Silver (Ag) is an inexpensive coinage metal; however, its lower activity compared to gold, platinum, and palladium limits its application in catalytic hydrogenation. Here, electron-deficient metallic single-atom Ag (AgSA) was loaded onto γ-AlO using a benzoquinone- and KNO- assisted photolysis approach.

View Article and Find Full Text PDF

Punch-marked coins (PMCs) are the oldest coins in India and among the most widely circulated globally, often found in hoards that highlight their extensive use. This study utilizes X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to analyze the surface elemental composition and chemical properties of nine series (S-0 to S-VIII) of Janapada (S-0) and imperial PMCs (S-1 to S-VIII) dating from 600 to 200 BCE, housed in the Numismatic Society of India at BHU, Varanasi, based on the Gupta-Hardakar classification related to the PMCs. XRD results reveal four prominent diffraction peaks corresponding to metallic silver (Ag) in the face-centred cubic (fcc) phase, with a slight variation in d-spacing (∼ 0.

View Article and Find Full Text PDF

Remote C-H bond cooperation strategy enabled silver catalyzed borrowing hydrogen reactions.

Chem Sci

December 2024

School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510006 P. R. China

Metal-ligand cooperation (MLC) is an essential strategy in transition metal catalysis. Traditional NH-based and OH-based MLC catalysts, as well as the later developed (de)aromatization strategy, have been widely applied in atom-economic borrowing hydrogen/hydrogen auto-transfer (BH/HA) reactions. However, these conventional MLC approaches are challenging for low-coordination and low-activity coinage metal complexes, arising from the instability during (de)protonation on the coordination atom, the constraint in linear coordination, and possible poisoning due to extra functional sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!