Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy-metal content in such architectures hinders their safe use. In this study, we demonstrate heavy-metal-free quantum dot-based nano-heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano-heterojunctions using type-II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron-hole wavefunction overlap of 0.52 due to type-II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor-acceptor ratio. This study paves the way toward safe and efficient nanoengineered quantum dot-based next-generation photostimulation devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843732 | PMC |
http://dx.doi.org/10.1038/s41598-021-82081-y | DOI Listing |
Int J Biol Macromol
January 2025
Department of Materials Engineering, Materials and Energy Research Center, Dezful Branch, Islamic Azad University, Dezfool, Iran.
Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China; Research Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, No.403 Nanchang Road, Urumqi, Xinjiang 830091, PR China. Electronic address:
A novel electrochemiluminescence (ECL) sensor based on eco-friendly CN QDs was constructed for the ultrasensitive detection of VK. The synthesized NiCo nanocages (NiCo NCs) with large specific surface area and high catalytic activity were used to effectively load CN QDs, forming the nanocomposites (NiCo NCs@CN QDs) with good luminescent properties. After grafting NiCo NCs@CN QDs onto poly-L-cysteine film, the ECL system achieved multiple signal amplification, which was due to the fact that poly-L-cysteine as a co-reactant accelerator sped up the generation of more SO from SO.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India.
Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.
View Article and Find Full Text PDFJ Fluoresc
January 2025
School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!