Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is currently a global pandemic, and there are limited laboratory studies targeting pathogen resistance. This study aimed to investigate the effect of selected disinfection products and methods on the inactivation of SARS-CoV-2 in the laboratory. We used quantitative suspension testing to evaluate the effectiveness of the disinfectant/method. Available chlorine of 250 mg/L, 500 mg/L, and 1000 mg/L required 20 min, 5 min, and 0.5 min to inactivate SARS-CoV-2, respectively. A 600-fold dilution of 17% concentration of di-N-decyl dimethyl ammonium bromide (283 mg/L) and the same concentration of di-N-decyl dimethyl ammonium chloride required only 0.5 min to inactivate the virus efficiently. At 30% concentration for 1 min and 40% and above for 0.5 min, ethanol could efficiently inactivate SARS-CoV-2. Heat takes approximately 30 min at 56 °C, 10 min above 70 °C, or 5 min above 90 °C to inactivate the virus. The chlorinated disinfectants, Di-N-decyl dimethyl ammonium bromide/chloride, ethanol, and heat could effectively inactivate SARS-CoV-2 in the laboratory test. The response of SARS-CoV-2 to disinfectants is very similar to that of SARS-CoV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843590 | PMC |
http://dx.doi.org/10.1038/s41598-021-82148-w | DOI Listing |
Virulence
December 2025
Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghais, China.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly, leading to an Omicron outbreak in Shanghai in mid-December after adjustments to the Coronavirus Disease 2019 (COVID-19) control strategy. To investigate the impact of COVID-19 infection among hypothyroid patients, we gathered data on the hypothyroid outpatients with COVID-19 infection during this time at the Thyroid Disease Center (TDC) of Shanghai Central Hospital. Patients were divided into two groups based on whether their hypothyroidism was caused by Hashimoto's Thyroiditis (HT): the HT and the non-HT group.
View Article and Find Full Text PDFAutophagy
December 2024
Department of Cell and Molecular Biology, Stockholm, Sweden.
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase.
View Article and Find Full Text PDFACS Catal
December 2024
Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log( / ) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH and p vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of p = 8.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain.
Previous works show the key role of electrostatics in the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus-environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized.
View Article and Find Full Text PDFExpert Rev Vaccines
December 2024
Guangzhou Patronus Biotech Co, Ltd, Guangzhou, China.
Background: LYB001 is a recombinant protein COVID-19 vaccine displaying a receptor-binding domain (RBD) in a highly immunogenic array on virus-like particles (VLPs). This study assessed the immunogenicity and safety of LYB001 as a booster.
Research Design And Methods: In this randomized, active-controlled, double-blinded, phase 3 trial, participants aged ≥18 years received a booster with LYB001 or ZF2001 (Recombinant COVID-19 Vaccine).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!