AI Article Synopsis

  • The ability to measure electric signals from action potentials noninvasively is crucial in biomedicine, traditionally done using expensive superconducting detectors.
  • Researchers propose using nitrogen vacancy centers in diamond as an alternative method to detect magnetic fields generated by these electrical signals in living tissue.
  • They successfully demonstrated this technique with mouse muscle, achieving good sensitivity and signal recovery in an unshielded lab setting, paving the way for future improvements in monitoring electrical activity in biological samples.

Article Abstract

The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spatial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond. With 50 pT/[Formula: see text] sensitivity, we show the first measurements of magnetic sensing from mammalian tissue with a diamond sensor using mouse muscle optogenetically activated with blue light. We show these proof of principle measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques. Although as yet uncompetitive with probe electrophysiology in terms of sensitivity, we demonstrate the feasibility of sensing action potentials via magnetic field in mammals using a diamond quantum sensor, as a step towards microscopic imaging of electrical activity in a biological sample using nitrogen vacancy centres in diamond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844290PMC
http://dx.doi.org/10.1038/s41598-021-81828-xDOI Listing

Publication Analysis

Top Keywords

action potentials
12
magnetic field
12
diamond quantum
8
quantum sensor
8
sensing mammalian
8
mammalian tissue
8
nitrogen vacancy
8
vacancy centres
8
centres diamond
8
diamond
5

Similar Publications

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Deep Learning-Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording.

Adv Sci (Weinh)

December 2024

Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China.

The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole-cell recordings. The framework integrates machine learning for anomaly detection and deep learning for multi-class classification.

View Article and Find Full Text PDF

Introduction: Increased fatty infiltration of the paraspinal muscles (PM) has been recognized as a sign of decreased muscle quality in patients with degenerative disc disease. However, whether fatty infiltration is a consequence of a neurogenic process due to spinal nerve root compression has not yet been determined.

Objective: To investigate the correlation between fatty infiltration of the paraspinal muscles (PM) and neurogenic remodeling of motor unit action potentials (MUAPs) in patients with lumbar radiculopathy.

View Article and Find Full Text PDF

Introduction: A fundamental property of the neocortex is its columnar organization in many species. Generally, neurons of the same column share stimulus preferences and have strong anatomical connections across layers. These features suggest that neurons within a column operate as one unified network.

View Article and Find Full Text PDF

Background First-year medical students may find it challenging to integrate complex physiological concepts, particularly neuromuscular physiology. While concept mapping has shown promise in medical education, its specific application in teaching intricate physiological mechanisms still needs to be explored. With this background, the objective of the study was to assess the feasibility of using concept mapping among first-year medical students and to explore the perception of students about concept mapping as an educational tool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!