In the present study, novel, 1,3-diaryltriazene-derived triazene compounds were synthesized and tested. Triazenes are versatile and belong to a group of alkylating agents with interesting physicochemical properties and proven biological activities. This study describes the synthesis, molecular and crystalline structure, biological activity evaluation, and antifungal and antimicrobial potentials of 1,3-bis(X-methoxy-Y-nitrophenyl)triazenes [X = 2 and 5; Y = 4 and 5]. The antimicrobial and antifungal activities of the compounds were tested by evaluating the sensitivity of bacteria (American Type Culture Collection, ATCC) and clinical isolates to their solutions using standardized microbiological assays, cytotoxicity evaluation, and ecotoxicity tests. The antimicrobial potentials of triazenes were determined according to their minimum inhibitory concentrations (MICs); these compounds were active against gram-positive and gram-negative bacteria, with low MIC values. The most surprising result was obtained for T3 having the effective MIC of 9.937 µg/mL and antifungal activity against Candida albicans ATCC 90028, C. parapsilosis ATCC 22019, and C. tropicallis IC. To the best of our knowledge, this study is the first to report promising activities of triazene compounds against yeast and filamentous fungi. The results showed the potential utility of triazenes as agents affecting selected resistant bacterial and fungal strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844262PMC
http://dx.doi.org/10.1038/s41598-021-81823-2DOI Listing

Publication Analysis

Top Keywords

triazene compounds
12
antimicrobial potentials
8
compounds
5
assessment biological
4
biological potential
4
potential diaryltriazene-derived
4
diaryltriazene-derived triazene
4
compounds study
4
study novel
4
novel 13-diaryltriazene-derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!