Controlling nanocarrier interactions with the immune system requires a thorough understanding of the surface properties that modulate protein adsorption in biological fluids, since the resulting protein corona redefines cellular interactions with nanocarrier surfaces. Albumin is initially one of the dominant proteins to adsorb to nanocarrier surfaces, a process that is considered benign or beneficial by minimizing opsonization or inflammation. Here, we demonstrate the surface chemistry of a model nanocarrier can be engineered to stabilize or denature the three-dimensional conformation of adsorbed albumin, which respectively promotes evasion or non-specific clearance in vivo. Interestingly, certain common chemistries that have long been considered to convey stealth properties denature albumin to promote nanocarrier recognition by macrophage class A1 scavenger receptors, providing a means for their eventual removal from systemic circulation. We establish that the surface chemistry of nanocarriers can be specified to modulate adsorbed albumin structure and thereby tune clearance by macrophage scavenger receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844416 | PMC |
http://dx.doi.org/10.1038/s41467-020-20886-7 | DOI Listing |
Biosens Bioelectron
December 2024
Cnam, SATIE Laboratory, UMR, CNRS 8029, 292 rue Saint Martin, 75003, Paris, France. Electronic address:
This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea.
The adsorption of plasma proteins (human serum albumin, immunoglobulin γ-1, apolipoproteins A-I and E-III) onto polystyrene surfaces grafted with polyethylene glycol (PEG) at different grafting densities is simulated using an all-atom PEG model validated by comparing the conformations of isolated PEG chains with previous simulation and theoretical values. At high PEG density, the grafted PEG chains extend like brushes, while at low density, they significantly adsorb to the surface due to electrostatic attraction between polystyrene amines and PEG oxygens, forming a PEG layer much thinner than its Flory radius. Free energy calculations show that PEGylation can either increase or decrease the binding strength between proteins and surfaces, to an extent dependent on PEG density and specific proteins involved, in agreement with experiments.
View Article and Find Full Text PDFBest Pract Res Clin Gastroenterol
December 2024
Department of Critical Care Medicine, University of Alberta, Edmonton, Canada; Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada. Electronic address:
J Fluoresc
December 2024
National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
This paper describes the synthesis of CoFe₂O₄ nanoparticles via a simple ultrasonic-assisted co-precipitation method and their functionalization with thiol groups using (3-Mercaptopropyl)trimethoxysilane (MPTS) as the functionalizing agent. The use of ultrasonic energy not only serves as a green energy source but also reduces the reaction time fivefold compared to conventional methods. The synthesized CoFe₂O₄ nanoparticles were characterized for their surface and internal properties using instrumental techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Vibrating Sample Magnetometer (VSM).
View Article and Find Full Text PDFCurr Res Food Sci
November 2024
INRAE, UR BIA, F-44316, Nantes, France.
The food transition towards an increased consumption of plant proteins aimed at limiting environmental impacts requires a diversification of plant protein sources. In this study, we explored the potentialities of the sustainable oilseed crop camelina to provide dietary proteins and to prepare oil-in-water emulsions. An innovative green refinery process, including the removal by ultrasound of the mucilage attached at the surface of the seeds and extraction by grinding in water at pH 8, was used to recover aqueous extracts containing camelina seed proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!