A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scalable Binder-Free Freestanding Electrodes Based on a Cellulose Acetate-Assisted Carbon Nanotube Fibrous Network for Practical Flexible Li-Ion Batteries. | LitMetric

Herein, a freestanding cellulose acetate-carbon nanotube (CA-CNT) film electrode is presented to achieve highly flexible, high-energy lithium-ion batteries (LIBs). CA serves as a dispersing agent of CNTs and a binder-free network former. A straightforward washing can remove CA in the electrode almost completely, while the fibrous CNT network within the electrode is sustained. Furthermore, the facile fabrication enables the large-scale production of the film electrode because the CA-CNT film is processed by a conventional casting method and not by the area-limited vacuum filtration. The superior electrochemical performance and high flexibility of the full cell assembled with CA-CNT-based electrodes are maintained even at a high active material loading, which has been proven difficult to accomplish in the conventional configuration LIBs. In addition, by simply stacking six sheets of the freestanding film electrode, a capacity as high as 5.4 mA h cm is achieved. The assembled pouch battery operates stably under extreme deformation. We demonstrate that the rational design of the electrode could extend the flexibility to a higher energy than that achieved with the conventional configuration. We believe that the low production cost, high flexibility, and superior electrochemical performance of the proposed freestanding film electrode can expedite the implementation of wearable gears in daily life.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c22664DOI Listing

Publication Analysis

Top Keywords

film electrode
16
ca-cnt film
8
superior electrochemical
8
electrochemical performance
8
high flexibility
8
conventional configuration
8
freestanding film
8
electrode
7
film
5
scalable binder-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!