Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study for the first time investigated the advanced treatment of bio-treated landfill leachate effluent using a novel reactive electrochemical membrane (REM) technology at the laboratory and pilot scales. At the laboratory scale, RuO-Ir-REM, TiO-REM, and β-PbO-REM featured similar properties in pore size and water flux. Although RuO-Ir-REM holds more reactive sites than the other two REMs, β-PbO-REM and TiO-REM featured higher oxidation ability than RuO-Ir-REM, causing their high yield of hydroxyl radical. Consequently, β-PbO-REM and TiO-REM performed better than RuO-Ir-REM, which removed total organic carbon and ammonia nitrogen by 70%-76% and 100%, respectively, after 45 minutes of treatment. Fluorescence spectroscopy analysis showed that humic acid-like substances were oxidized by the REM treatment. Using the β-PbO-REM in the lab-scale setup with the solutions circulated, we observed a greater removal of chemical oxygen demand (COD) at a higher applied current or a faster water flux. The pilot system with four large size of β-PbO-REMs modules in series was developed based on the lab-scale setup, which steadily treated landfill leachate in compliance with the disposal regulations of China, at an energy consumption of 3.6 kWh/m. Also, a single-pass REM can effectively prevent the transformation of chloride to chlorate and perchlorate. Our study showed REM technology is a powerful and promising process for the advanced treatment of landfill leachate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2020.116790 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!