As species struggle to cope with rising ocean temperatures, temperate marine assemblages are facing major reorganization. Many benthic species have a brief but critical period dispersing through the plankton, when they are particularly susceptible to variations in temperature. Impacts of rising temperatures can thus ripple through the population with community-wide consequences. However, responses are highly species-specific, making it difficult to discern assemblage-wide patterns in the life histories of different fish species. Here, we evaluate the responses to temperature in the early life histories of several fish species using otolith reconstructive techniques. We also assess the consequences of future warming scenarios to this assemblage. We sampled recent settlers of nine common species across a temperature gradient in the Mediterranean Sea and obtained environmental data for each individual. Using otolith microstructure, we measured early life traits including pelagic larval duration (PLD), growth rate, settlement size, hatching and settlement dates. We used a GLM framework to examine how environmental variables influenced early life-history parameters. We show that increasing temperature results in considerable reduction in the dispersal potential of temperate fish. We find a nearly universal, assemblage-wide decline in pelagic larval duration (PLD) of between 10% and 25%. This was because, with increasing temperature, larvae grew quicker to their settlement size. Settlement size itself was less affected by temperature and appears to be an ontogenetically fixed process. Given current estimates of ocean warming, there could be an assemblage-wide reduction in larval dispersal of up to 50 km across the Mediterranean, reducing connectivity and potentially isolating populations as waters warm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1365-2656.13435 | DOI Listing |
Evol Hum Sci
November 2024
UCL Institute of Archaeology, University College London, London WC1H 0PY, UK.
The transition to sedentary agricultural societies in northern China fuelled considerable demographic growth from 5000 to 2000 BC. In this article, we draw together archaeobotanical, zooarchaeological and bioarchaeological data and explore the relationship between several aspects of this transition, with an emphasis on the millet-farming productivity during the Yangshao period and how it facilitated changes in animal husbandry and consolidation of sedentism. We place the period of domestication (the evolution of non-shattering, initial grain size increase and panicle development) between 8300 and 4300 BC.
View Article and Find Full Text PDFConfl Health
December 2024
Bixby Center for Population, Health and Sustainability, School of Public Health, University of California, Berkeley, Berkeley, USA.
Dispersal is a fundamental ecological process that influences population dynamics and genetic diversity and is therefore an important component of the models used to simulate population responses to environmental change. We considered informed dispersal in relation to settlement location, where individuals could optimise selection of settlement location with regard to per capita resource availability and investigated the importance of this type of informed dispersal for simulated demography and genetic diversity under different biological and environmental scenarios. We used an individual-based simulation model scaled with reference to the ecology of small mammals in fire prone savanna ecosystems.
View Article and Find Full Text PDFCurr Zool
December 2024
School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4472, New Zealand.
Selection of a suitable habitat by animals before settlement is critical for their survival and reproduction. In silk-spinning arthropods like spider mites, denser webs offer protection from predation and serve as a dispersal mode. Settling in habitats with the presence of conspecifics and silk webs can benefit the habitat-searching females.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Prehistoric and Protohistoric Archaeology, Kiel, Schleswig-Holstein, Germany.
We present an interdisciplinary analysis of finds from the Trypillia settlement of Kosenivka, Ukraine (ca. 3700-3600 BCE, Trypillia C1-2), that links information on human, faunal, and botanical remains with archaeological data to provide exceptionally detailed insights into life and death at a giant Trypillia settlement. We obtained osteological, palaeopathological, morphological and histotaphonomic data from human bone fragments; performed carbon and nitrogen stable isotopic analysis of human and animal bone to calculate food webs; modelled newly generated radiocarbon dates to refine the site's chronology; and contextualised the finds within the phenomenon of a general lack of human remains in Early and Middle Trypillia times through a literature review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!