Purpose: To perform a comprehensive dosimetric and clinical evaluation of the new Pinnacle Personalized automated planning system for complex head-and-neck treatments.

Methods: Fifteen consecutive head-neck patients were enrolled. Radiotherapy was prescribed using VMAT with simultaneous integrated boost strategy. Personalized planning integrates the Feasibility engine able to supply an "a priori" DVH prediction of the achievability of planning goals. Comparison between clinically accepted manually-generated (MP) and automated (AP) plans was performed using dose-volume histograms and a blinded clinical evaluation by two radiation oncologists. Planning time between MP and AP was compared. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array.

Results: For similar targets coverage, AP plans reported less irradiation of healthy tissue, with significant dose reduction for spinal cord, brainstem and parotids. On average, the mean dose to parotids and maximal doses to spinal cord and brainstem were reduced by 13-15% (p < 0.001), 9% (p < 0.001) and 16% (p < 0.001), respectively. The integral dose was reduced by 16% (p < 0.001). The dose conformity for the three PTVs was significantly higher with AP plans (p < 0.001). The two oncologists chose AP plans in more than 80% of cases. Overall planning times were reduced to <30 min for automated optimization. All AP plans passed the 3%/2 mm γ-analysis by more than 95%.

Conclusion: Complex head-neck plans created using Personalized automated engine provided an overall increase of plan quality, in terms of dose conformity and sparing of normal tissues. The Feasibility module allowed OARs dose sparing well beyond the clinical objectives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2020.12.015DOI Listing

Publication Analysis

Top Keywords

clinical evaluation
8
spinal cord
8
cord brainstem
8
planning
5
personalized automation
4
automation treatment
4
treatment planning
4
planning head-neck
4
head-neck cancer
4
cancer step
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!